Abdel-Aziz HMM, Rizwan M. Chemically synthesized silver nanoparticles induced physio-chemical and chloroplast ultrastructural changes in broad bean seedlings. Chemosphere. 2019;235:1066–72.
Article CAS PubMed Google Scholar
Abou-Zeid H, Ismail G. The role of priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L to salt stress. Egypt J Bot. 2018;58:73–85.
Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain Chem Eng. 2019;7:14580–90.
Adetunji AE, Adetunji TL, Varghese B, Sershen PNW. Oxidative stress, ageing and methods of seed invigoration: an overview and perspectives. Agronomy. 2021;11:2369.
Ahuja R, Sidhu A, Bala A. Synthesis and evaluation of iron (ii) sulfide aqua nanoparticles (FeS-NPs) against Fusarium verticillioides causing sheath rot and seed discoloration of rice. Eur J Plant Pathol. 2019;155:163–71.
Banerjee S, Islam J, Mondal S, Saha A, Saha B, Sen A. Proactive attenuation of arsenic-stress by nano-priming: zinc oxide nanoparticles in Vigna mungo (L.) hepper trigger antioxidant defense response and reduce root-shoot arsenic translocation. J Hazard Mater. 2023;446:130735. https://doi.org/10.1016/j.jhazmat.2023.130735.
Chen J, Zeng X, Yang W, Xie H, Ashraf U, Mo Z, Liu J, Li G, Li W. Seed priming with multiwall carbon nanotubes (MWCNTs) modulates seed germination and early growth of maize under cadmium (Cd) toxicity. J Soil Sci Plant Nutr. 2021;21:1793–805.
Chen N, Yao P, Zhang W, Zhang Y, Xin N, Wei H, Zhang T, Zhao C. Selenium nanoparticles: enhanced nutrition and beyond. Crit Rev Food Sci Nutr. 2023;63:12360–71.
Article CAS PubMed Google Scholar
Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Sci Rep. 2017;7:9754.
Article PubMed PubMed Central Google Scholar
Choudhary RC, Kumaraswamy RV, Kumari S, Sharma SS, Pal A, Raliya R, Biswas P, Saharan V. Zinc encapsulated chitosan nanoparticle to promote maize crop yield. Int J Biol Macromol. 2019;127:126–35.
Article CAS PubMed Google Scholar
Devi B, Tiwari M, Yadav N, Singh P. Intergenerational immune priming: harnessing plant growth promoting rhizobacteria (PGPR) for augmented wheat protection against spot blotch. Physiol Mol Plant Pathol. 2023;128: 102164.
Devkota KP, Devkota M, Rezaei M, Oosterbaan R. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric Syst. 2022;198: 103390.
Dey S, Biswas A, Kundu R, Paul S. Role of Copper in Tolerance Against Different Environmental Stress. In Biology and Biotechnology of Environmental Stress Tolerance in Plants 2024 (pp. 351-386). Apple Academic Press
Dey S, Kundu R, Gopal G, Mukherjee A, Nag A, Paul S. Enhancement of nitrogen assimilation and photosynthetic efficiency by novel iron pulsing technique in Oryza sativa L. var Pankaj. Plant Physiol Biochem. 2019;144:207–21. https://doi.org/10.1016/j.plaphy.2019.09.037.
Article CAS PubMed Google Scholar
Dey S, Nath S, Ansari TA, Biswas A, Barman F, Mukherjee S, Gopal G, Bhattacharyya A, Mukherjee A, Kundu R. Application of green synthesized bimetallic nZVI-Cu nanoparticle as a sustainable alternative to chemical fertilizers to enhance growth and photosynthetic efficiency of rice seedlings. Plant Physiol Biochem. 2023;201:107837.
Article CAS PubMed Google Scholar
El-Badri AM, Batool M, Mohamed IAA, Wang Z, Wang C, Tabl KM, Khatab A, Kuai J, Wang J, Wang B. Mitigation of the salinity stress in rapeseed (Brassica napus L) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. Environ Pollut. 2022;310:119815.
Article CAS PubMed Google Scholar
El-Badri AM, Batool M, Wang C, Hashem AM, Tabl KM, Nishawy E, Kuai J, Zhou G, Wang B. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicol Environ Saf. 2021;225: 112695.
Article CAS PubMed Google Scholar
El-Badri AMA, Batool M, Mohamed IAA, Khatab A, Sherif A, Wang Z, Salah A, Nishawy E, Ayaad M, Kuai J. Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.). Plant Physiol Biochem. 2021;166:376–92.
Article CAS PubMed Google Scholar
El-Beltagi HS, Ahmed OK, Hegazy AE. Molecular role of nitric oxide in secondary products production in Ginkgo biloba cell suspension culture. Not Bot Horti Agrobot Cluj-Napoca. 2015;43:12–8.
do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021 Jan 20;11(2):267.
Etesami H, Fatemi H, Rizwan M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: a review. Ecotoxicol Environ Saf. 2021;225: 112769. https://doi.org/10.1016/j.ecoenv.2021.112769.
Article CAS PubMed Google Scholar
Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. 2015;75:391–404.
Farooq T, Nisa ZU, Hameed A, Ahmed T, Hameed A. Priming with copper-chitosan nanoparticles elicit tolerance against PEG-induced hyperosmotic stress and salinity in wheat. BMC Chem. 2022;16:23.
Article CAS PubMed PubMed Central Google Scholar
Garg R, Maheshwari S. Seed priming and fortification of seeds using nanotechnology: a review. EPH-Int J Agric Environ Res. 2023;9:11–7.
Gomes DG, Pelegrino MT, Ferreira AS, Bazzo JHB, Zucareli C, Seabra AB, Oliveira HC. Seed priming with copper-loaded chitosan nanoparticles promotes early growth and enzymatic antioxidant defense of maize (Zea mays L.) seedlings. J Chem Technol Biotechnol. 2021;96:2176–84.
González-García Y, López-Vargas ER, Pérez-Álvarez M, Cadenas-Pliego G, Benavides-Mendoza A, Valdés-Reyna J, Pérez-Labrada F, Juárez-Maldonado A. Seed priming with carbon nanomaterials improves the bioactive compounds of tomato plants under saline stress. Plants. 2022;11:1984.
Article PubMed PubMed Central Google Scholar
Goswami P, Mathur J, Srivastava N. Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon. 2022;8:e09908.
Article CAS PubMed PubMed Central Google Scholar
Guha T, Barman S, Mukherjee A, Kundu R. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice. Chemosphere. 2020;260: 127533. https://doi.org/10.1016/j.chemosphere.2020.127533.
Article CAS PubMed Google Scholar
Guha T, Mukherjee A, Kundu R. Nano-scale zero valent iron (nZVI) priming enhances yield, alters mineral distribution and grain nutrient content of Oryza sativa L. cv. Gobindobhog: a field study. J Plant Growth Regul. 2021;41:1–24.
Guha T, Mukherjee A, Kundu R. Nano-scale zero valent iron (nZVI) priming enhances yield, alters mineral distribution and grain nutrient content of Oryza sativa L. cv. Gobindobhog: a field study. J Plant Growth Regul. 2022;41:710–33.
Article CAS PubMed Google Scholar
Guha T, Ravikumar KVG, Mukherjee A, Mukherjee A, Kundu R. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiol Biochem. 2018;127:403–13.
Article CAS PubMed Google Scholar
Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014: 1–18
Hameed A, Maqsood W, Hameed A, Qayyum MA, Ahmed T, Farooq T. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: an ecofriendly and sustainable approach. Environ Sci Pollut Res. 2024;31(6):1–13.
Hasanuzzaman M, Fujita M. Plant responses and tolerance to salt stress: physiological and molecular interventions. Int J Mol Sci. 2022;23:4810.
留言 (0)