L. Mredhula, M.A. Dorairangasamy, An extensive review of significant researches on medical image denoising techniques. Int. J. Comput. Appl. 64(14), 1–12 (2013)
M. Ali, D. Magee, U. Dasgupta, Signal processing overview of ultrasound systems for medical imaging, in Texas Instruments, White Paper SPRAB12, Texas (2008)
A. Milkowski, Y. Li, D. Becker, S. O. Ishrak, Speckle reduction imaging, in Technical White Paper-General Electric Health Care (Ultrasound), vol. 9, pp. 1 (2009).
J. Zhang, M.D. Whiting, Q. Zhang, Diurnal pattern in canopy light interception for tree fruit orchard trained to an upright fruiting offshoots (UFO) architecture. Biosys. Eng. 129, 1–10 (2015)
L. Weng, J.M. Reid, P.M. Shankar, K. Soetanto, Ultrasound speckle analysis based on the K distribution. J. Acoust. Soc. Am. 89(6), 2992–2995 (1991)
J.S. Owotogbe, T.S. Ibiyemi, B.A. Adu, A comprehensive review on various types of noise in image processing. Int. J. Sci. Eng. Res. 10(11), 388–393 (2019)
B. Vimala, S. Srinivasan, S.K. Mathivanan, V. Muthukumaran, J.C. Babu, N. Herencsar, L. Vilcekova, Image noise removal in ultrasound breast images based on hybrid deep learning technique. Sensors 23(3), 1167 (2023)
S.K. Gupta, R. Pal, A. Ahmad, F. Melandsø, A. Habib, Image denoising in acoustic microscopy using block-matching and 4D filter. Sci. Rep. 13(1), 13212 (2023)
L.I. Yancheng, X. Zeng, Q. Dong, X. Wang, RED-MAM: a residual encoder-decoder network based on multi-attention fusion for ultrasound image denoising. Biomed. Signal Process. Control 79, 104062 (2023)
L. Jiao, J. Zhao, A survey on the new generation of deep learning in image processing. IEEE Access 7, 172231–172263 (2019)
M. I. Razzak, S. Naz, A., Zaib, Deep learning for medical image processing: overview, challenges and the future, in Classification in BioApps: Automation of Decision Making, pp. 323–350 (2018)
A. Maier, C. Syben, T. Lasser, C. Riess, A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 29(2), 86–101 (2019)
N.A. El-Hag et al., Classification of retinal images based on convolutional neural network. Microsc. Res. Tech. 84(3), 394–414 (2021)
S. Bhattacharya, P.K.R. Maddikunta, Q.V. Pham, T.R. Gadekallu, C.L. Chowdhary, M. Alazab, M.J. Piran, Deep learning and medical image processing for coronavirus (COVID-19) pandemic: a survey. Sustain. Cities Soc. 65, 102589 (2021)
S. Li, Q. Yuan, Y. Zhang, B. Lv, F. Wei, Image dehazing algorithm based on deep learning coupled local and global features. Appl. Sci. 12(17), 8552 (2022)
I.P. Okuwobi, Z. Ding, J. Wan, J. Jiang, SWM-DE: statistical wavelet model for joint denoising and enhancement for multimodal medical images. Med. Novel Technol. Dev. 18, 100234 (2023)
A. Karuppannan, K.S. Reddy, N.M. Patil, C.M.V. Srinivas, Spectral-spatial deep densenet learning for multispectral image classification and analysis. ICTACT J Image Video Process. 14, 1 (2023). https://doi.org/10.21917/ijivp.2023.0437
Y. Jadhav, J. Berthel, C. Hu, R. Panat, J. Beuth, A.B. Farimani, StressD: 2D Stress estimation using denoising diffusion model. Comput. Methods Appl. Mech. Eng. 416, 116343 (2023)
Article ADS MathSciNet Google Scholar
V.R. Hasti, D. Shin, Denoising and fuel spray droplet detection from light-scattered images using deep learning. Energy and AI 7, 100130 (2022)
M. Luo et al., Deep learning for anterior segment OCT angiography automated denoising and vascular quantitative measurement. Biomed. Signal Process. Control 83, 104660 (2023)
F. Schwenker, H.A. Kestler, G. Palm, Three learning phases for radial-basis-function networks. Neural Netw. 14(4–5), 439–458 (2001)
W. Shi, F. Jiang, S. Zhang, R. Wang, D. Zhao, H. Zhou, Hierarchical residual learning for image denoising. Signal Process. Image Commun. 76, 243–251 (2019)
H. Yin, Y. Gong, G. Qiu, Fast and efficient implementation of image filtering using a side window convolutional neural network. Signal Process. 176, 107717 (2020)
S. Mia, M.H. Talukder, M.M. Rahman, RobustDespeckling: robust speckle noise reduction method using multi-scale and kernel fisher discriminant analysis. Biomed. Eng. Adv. 5, 100085 (2023)
M. Juneja, G.S. Chhatwal, S. Bhattacharya, N. Thakur, P. Jindal, Autoencoder-based dense denoiser and block-based wiener filter for noise reduction of optical coherence tomography. Comput. Electr. Eng. 108, 108708 (2023)
R. Dass, Speckle noise reduction of ultrasound images using BFO cascaded with wiener filter and discrete wavelet transform in homomorphic region. Procedia Comput. Sci. 132, 1543–1551 (2018)
P. Kokil, S. Sudharson, Despeckling of clinical ultrasound images using deep residual learning. Comput. Methods Programs Biomed. 194, 105477 (2020)
X. Feng, Q. Huang, X. Li, Ultrasound image de-speckling by a hybrid deep network with transferred filtering and structural prior. Neurocomputing 414, 346–355 (2020)
K. Singh, B. Sharma, J. Singh, G. Srivastava, S. Sharma, A. Aggarwal, X. Cheng, Local statistics-based speckle reducing bilateral filter for medical ultrasound images. Mobile Netw. Appl. 25(6), 2367–2389 (2020)
A.E. Ilesanmi, O.P. Idowu, U. Chaumrattanakul, S.S. Makhanov, Multiscale hybrid algorithm for pre-processing of ultrasound images. Biomed. Signal Process. Control 66, 102396 (2021)
L.J. Ahmed, Discrete shearlet transform based speckle noise removal in ultrasound images. Natl. Acad. Sci. Lett. 41, 91–95 (2018)
Article MathSciNet Google Scholar
A. Kumar, S. Srivastava, Restoration and enhancement of breast ultrasound images using extended complex diffusion based unsharp masking. Proc. Inst. Mech. Eng. [H] 236(1), 12–29 (2022)
B. Goyal, A. Dogra, S. Agrawal, B. Sohi, A. Sharma, Image denoising review: from classical to state-of-the-art approaches. Inf. Fusion 55, 220–244 (2020)
A. P.Witkin, Scale-space filtering, In Proc. Int. Joint Conf. Artif. Intell., Karlsruhe, Germany, vol. 42, no. 3, pp. 1019–1021, (1983).
P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation-based noise removal algorithms. Phys. D Nonlinear Phenomena 60(1–4), 259–268 (1992)
Article ADS MathSciNet Google Scholar
A.N. Tikhonov, V.Y. Arsenin, Solutions of ill-posed problem. SIAM Rev. 21(2), 266–267 (1979)
M. R. Hajiaboli, A self-governing hybrid model for noise removal, in Advances in Image and Video Technology (Lecture Notes in Computer Science), Tokyo, Japan. Springer, vol. 5414, pp. 295–305 (2009)
D. Ziou, A. Horé, Reducing aliasing in images: a PDE-based diffusion revisited. Pattern Recognit. 45(3), 1180–1194 (2012)
W. El-Shafai et al., Traditional and deep-learning-based denoising methods for medical images. Multimed. Tools Appl. 83(17), 52061–52088 (2024)
N. Nazir, A. Sarwar, B.S. Saini, Recent developments in denoising medical images using deep learning: an overview of models, techniques, and challenges. Micron 180, 103615 (2024)
N. Ishfaq, A review on comparative study of image-denoising in medical imaging, in Deep Learning for Multimedia Processing Applications, pp. 1–17 (2024).
https://www.kaggle.com/datasets/vuppalaadithyasairam/ultrasound-breast-images-for-breast cancer?resource=download.
留言 (0)