Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development

Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab. 2022;34(11):1675–99.

Article  CAS  PubMed  Google Scholar 

Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature. 2011;478(7367):110–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free fatty acid receptors in health and disease. Physiol Rev. 2020;100(1):171–210.

Article  CAS  PubMed  Google Scholar 

Mu H, Hoy CE. The digestion of dietary triacylglycerols. Prog Lipid Res. 2004;43(2):105–33.

Article  CAS  PubMed  Google Scholar 

Holtof M, Lenaerts C, Cullen D, Vanden BJ. Extracellular nutrient digestion and absorption in the insect gut. Cell Tissue Res. 2019;377(3):397–414.

Article  PubMed  Google Scholar 

Grillo LAM, Majerowicz D, Gondim KC. Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): role of a midgut triacylglycerol-lipase. Insect Biochem Mol Biol. 2007;37(6):579–88.

Article  CAS  PubMed  Google Scholar 

Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. Insect Biochem Mol Biol. 2018;101:108–23.

Article  CAS  PubMed  Google Scholar 

Fritzen AM, Lundsgaard AM, Kiens B. Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nat Rev Endocrinol. 2020;16(12):683–96.

Article  CAS  PubMed  Google Scholar 

Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23(13):5928–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schott MB, Weller SG, Schulze RJ, Krueger EW, Drizyte-Miller K, Casey CA, et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Biol. 2019;218(10):3320–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225–45.

Article  CAS  PubMed  Google Scholar 

Yang A, Mottillo EP. Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J. 2020;477(5):985–1008.

Article  CAS  PubMed  Google Scholar 

Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. Fat signals-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 2012;15(3):279–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sadurska B, Skalska-Hilgier E. Role of lipases in human metabolism. Postepy Hig Med Dosw. 2001;55(4):541–63.

CAS  PubMed  Google Scholar 

Wong H, Schotz MC. The lipase gene family. J Lipid Res. 2002;43(7):993–9.

Article  CAS  PubMed  Google Scholar 

Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem. 2006;281(52):40236–41.

Article  CAS  PubMed  Google Scholar 

Kumar N, Thunuguntla VB, Veeramachaneni GK, Guntupalli S, Bondili JS. Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase. Biosci Rep. 2016;36(4):e00358.

Article  Google Scholar 

Pusch LM, Riegler-Berket L, Oberer M, Zimmermann R, Taschler U. Alpha/beta-hydrolase domain-containing 6 (ABHD6)—a multifunctional lipid hydrolase. Metabolites. 2022;12(8):761.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma P, Zhang Y, Liang Q, Yin Y, Wang S, Han R, et al. Mifepristone (RU486) inhibits dietary lipid digestion by antagonizing the role of glucocorticoid receptor on lipase transcription. iScience. 2021;24(6):102507.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaltenecker D, Mueller KM, Benedikt P, Feiler U, Themanns M, Schlederer M, et al. Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice. Diabetologia. 2017;60(2):296–305.

Article  CAS  PubMed  Google Scholar 

Hollysz M, Derebecka-Holysz N, Trzeciak WH. Transcription of Lipe gene encoding hormone-sensitive lipase/cholesteryl esterase is regulated by SF-1 in human adrenocortical cells: involvement of protein kinase A signal transduction pathway. J Mol Endocrinol. 2011;46(1):29–36.

Article  CAS  PubMed  Google Scholar 

Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics. 2018;210(2):357–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arrese EL, Soulages JL. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 2010;55:207–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li YL, Yao YX, Zhao YM, Di YQ, Zhao XF. The steroid hormone 20-hydroxyecdysone counteracts insulin signaling via insulin receptor dephosphorylation. J Biol Chem. 2021;296:100318.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jindra M, Tumova S, Milacek M, Bittova L. A decade with the juvenile hormone receptor. Adv In Insect Phys. 2021;60:37–85.

Article  Google Scholar 

Zhao XF. G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone. Cell Commun Signal. 2020;18(1):146.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill RJ, Billas IM, Bonneton F, Graham LD, Lawrence MC. Ecdysone receptors: from the ashburner model to structural biology. Annu Rev Entomol. 2013;58:251–71.

Article  CAS  PubMed  Google Scholar 

Liu Y, Sheng Z, Liu H, Wen D, He Q, Wang S, et al. Juvenile hormone counteracts the bHLH-PAS transcription factors MET and GCE to prevent caspase-dependent programmed cell death in Drosophila. Development. 2009;136(12):2015–25.

Article  CAS  PubMed  Google Scholar 

DiAngelo JR, Birnbaum MJ. Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol Cell Biol. 2009;29(24):6341–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McMullen E, Hertenstein H, Strassburger K, Deharde L, Brankatschk M, Schirmeier S. Glycolytically impaired Drosophila glial cells fuel neural metabolism via β-oxidation. Nat Commun. 2023;14(1):2996.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif