Abbas SM. Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. J Stress Physiol Biochem. 2012;8(1):268–86.
Ábrawhám E, Hourton-Cabassa C, Erdei L, Szabados L. Methods for determination of proline in plants. Plant Stress Toler Methods Protoc. 2020;18:317–31.
Agarraberes FA, Dice JF. Protein translocation across membranes. Biochim Biophys Acta Bioenerg. 2001;1513:1–24.
Akbulut M, Çakır S. The effects of Se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem. 2010;48(2–3):160–6.
Ashraf MFMR, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;59(2):206–16.
Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010;277(9):2022–37.
Chauhan R, Awasthi S, Tripathi P, Mishra S, Dwivedi S, Niranjan A, Mallick S, Tripathi P, Pande V, Tripathi RD. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicol Environ Saf. 2017;138:47–55.
Dawood MG. Stimulating plant tolerance against abiotic stress through seed priming. Adv Seed Priming. 2018. https://doi.org/10.1007/978-981-13-0032-5_10.
Devika OS, Singh S, Sarkar D, Barnwal P, Suman J, Rakshit A. Seed priming: a potential supplement in integrated resource management under fragile intensive ecosystems. Front Sustain Food Syst. 2021;5:654001.
Farooq M, Wahid A, Kobayashi N, Fujita DBSM, Basra SM. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29(1):185–212.
Gebeyaw M. Review on: recent achievement of seed priming in improving seed germination and seedling growth in adverse environmental conditions. Int J Sci Res Publ. 2020;10(8):651–5.
Hasanuzzaman M, Bhuyan MB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M. Selenium in plants: boon or bane? Environ Exp Bot. 2020;178:104170.
Hussain S, Khan F, Hussain HA, Nie L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci. 2016;7:116.
Article PubMed PubMed Central Google Scholar
İşeri ÖD, Sahin FI, Haberal M. Sodium chloride priming improves salinity response of tomato at seedling stage. J Plant Nutr. 2014;37(3):374–92.
Jaiswal SK, Prakash R, Skalny AV, Skalnaya MG, Grabeklis AR, Skalnaya AA, Tinkov AA, Zhang F, Guo X, Prakash NT. Synergistic effect of selenium and UV-B radiation in enhancing antioxidant level of wheatgrass grown from selenium rich wheat. J Food Biochem. 2018;42(5):e12577.
Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep. 2017;7(1):1–14.
Jisha KC, Vijayakumari K, Puthur JT. Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant. 2013;2013(35):1381–96.
Keunen ELS, Peshev D, Vangronsveld J, Van Den Ende WIM, Cuypers ANN. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 2013;36(7):1242–55.
Khalofah A, Migdadi H, El-Harty E. Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa wild) to exogenous selenium application. Plants. 2021;10(4):719.
Article PubMed PubMed Central Google Scholar
Khan Z, Thounaojam TC, Chowdhury D, Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. Plant Growth Regul. 2022;100(2):409–33.
Klasek L. Chaperonin-mediated targeting of plastidic type I signal peptidase 1 (Doctoral dissertation, University of California, Davis). 2020.
Lanza MGDB, Dos Reis AR. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol Biochem. 2021;16:27–43.
Liu Y, Lv H, Yang N, Li Y, Liu B, Rensing C, Dai J, Fekih IB, Wang L, Mazhar SH, Kehinde SB. Roles of root cell wall components and root plaques in regulating elemental uptake in rice subjected to selenite and different speciation of antimony. Environ Exp Bot. 2019;163:36–44.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-delta delta C (T)) method. Methods. 2001;25(4):402–8.
Mahmood A, Turgay OC, Farooq M, Hayat R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol. 2016;92(8):112.
Mansoor M, Farooq A, Hami A, Mahajan R, Manzoor M, Bhat SA, Khan I, Masoodi KZ, Sofi PA, Khan FA, Bhat MA. Biochemical and proteomic insights revealed selenium priming induced phosphorus stress tolerance in common bean (Phaseolus vulgaris L.). Mol Biol Rep. 2023;50:1–13.
Manting EH, van der Does C, Remigy H, Engel A, Driessen AJ. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 2000;19(5):852–61.
Article PubMed PubMed Central Google Scholar
Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J. Seed priming: a feasible strategy to enhance drought tolerance in crop plants. Int J Mol Sci. 2020;21(21):8258.
Article PubMed PubMed Central Google Scholar
Matysik J, Alia Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Sci. 2002;85:525–32.
Moulick D, Santra SC, Ghosh D. Seed priming with Se mitigates As-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing As translocation. Environ Sci Pollut Res. 2018;25:26978–91.
Nawaz F, Ashraf MY, Ahmad R, Waraich EA. Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol Trace Elem Res. 2013;151:284–93.
Samota MK, Sasi M, Awana M, Yadav OP. Elicitor-induced biochemical and molecular manifestations to improve drought tolerance in rice (Oryza sativa L.) through seed-priming. Front Plant Sci. 2017;8:934.
Article PubMed PubMed Central Google Scholar
Schuenemann D, Amin P, Hartmann E, Hoffman NE. Chloroplast SecY is complexed to SecE and involved in the translocation of the 33-kDa but not the 23-kDa subunit of the oxygen evolving complex. J Biol Chem. 1999;274:12177–82.
Silva VM, Boleta EHM, Lanza MGDB, Lavres J, Martins JT, Santos EF, dos Santos FLM, Putti FF, Junior EF, White PJ, Broadley MR. Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environ Exp Bot. 2018;150:172–82.
Voelker R, Mendel-Hartvig J, Barkan A. Transposon-disruption of a maize nuclear gene, tha1, encoding a chloroplast SecA homologue: in vivo role of cp-SecA in thylakoid protein targeting. Genetics. 1997;145(2):467–78.
Article PubMed PubMed Central Google Scholar
Vrontou E, Economou A. Structure and function of SecA, the preprotein translocase nanomotor. Biochim Biophys Acta. 2004;1694:67–80.
Waqas M, Korres N E, Khan MD, Nizami AS, Deeba F, Ali I, Hussain H. Advances in the concept and methods of seed priming. Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crop plants. 2019; 11-41.
Wei LX, Lv BS, Li XW, Wang MM, Ma HY, Yang HY, Yang RF, Piao ZZ, Wang ZH, Lou JH, Jiang CJ. Priming of rice (Oryza sativa L.) seedlings with abscisic acid enhances seedling survival, plant growth, and grain yield in saline-alkaline paddy fields. Field Crops Res. 2017;203:86–93.
Zargar SM, Kurata R, Inaba S, Oikawa A, Fukui R, Ogata Y, Agrawal GK, Rakwal R, Fukao Y. Quantitative proteomics of Arabidopsis shoot microsomal proteins reveals a cross-talk between excess zinc and iron deficiency. Proteomics. 2015;15(7):1196–201.
Zhao Y, Hu C, Wu Z, Liu X, Cai M, Jia W, Zhao X. Selenium reduces cadmium accumulation in seed by increasing cadmium retention in root of oilseed rape (Brassica napus L.). Environ Exp Bot. 2019;158:161–70.
留言 (0)