Wu AM, Bisignano C, James SL et al (2021) Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev 2(9):e580–e592. https://doi.org/10.1016/S2666-7568(21)00172-0
Xiao PL, Cui AY, Hsu CJ et al (2022) Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis. Osteoporos Int 33(10):2137–2153. https://doi.org/10.1007/s00198-022-06454-3
Sun H, Saeedi P, Karuranga S et al (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119
Schuit SCE, Van Der Klift M, Weel AEAM et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1):195–202. https://doi.org/10.1016/j.bone.2003.10.001
Article CAS PubMed Google Scholar
De Laet CEDH, Van Hout BA, Burger H, Hofman A, Pols HAP (1997) Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ 315(7102):221–225. https://doi.org/10.1136/bmj.315.7102.221
Article PubMed PubMed Central Google Scholar
Trémollieres FA, Pouillès JM, Drewniak N, Laparra J, Ribot CA, Dargent-Molina P (2010) Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res 25(5):1002–1009. https://doi.org/10.1002/jbmr.12
Lorentzon M (2020) The importance and possible clinical impact of measuring trabecular and cortical bone microstructure to improve fracture risk prediction. J Bone Miner Res 35(5):831–832. https://doi.org/10.1002/jbmr.3940
Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31(1):8–11. https://doi.org/10.1016/S8756-3282(02)00815-3
Article CAS PubMed Google Scholar
Unal M, Creecy A, Nyman JS (2018) The role of matrix composition in the mechanical behavior of bone. Curr Osteoporos Rep 16(3):205–215. https://doi.org/10.1007/s11914-018-0433-0
Article PubMed PubMed Central Google Scholar
Sled JG, Pike GB (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46(5):923–931. https://doi.org/10.1002/mrm.1278
Article CAS PubMed Google Scholar
Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64. https://doi.org/10.1002/nbm.683
Article CAS PubMed Google Scholar
Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ (2002) Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 20(10):721–731. https://doi.org/10.1016/S0730-725X(02)00598-2
Article CAS PubMed Google Scholar
Wu T, Byun NE, Wang F et al (2020) Longitudinal assessment of recovery after spinal cord injury with behavioral measures and diffusion, quantitative magnetization transfer and functional magnetic resonance imaging. NMR Biomed 33(4):e4216. https://doi.org/10.1002/nbm.4216
Article PubMed PubMed Central Google Scholar
Bryant ND, Li K, Does MD et al (2014) Multi-parametric MRI characterization of inflammation in murine skeletal muscle. NMR Biomed 27(6):716–725
Article PubMed PubMed Central Google Scholar
Shin SH, Wendland MF, Wang J, Velasquez M, Vandsburger MH (2023) Noninvasively differentiating acute and chronic nephropathies via multiparametric urea-CEST, nuclear Overhauser enhancement -CEST, and quantitative magnetization transfer MRI. Magn Reson Med 89(2):774–786. https://doi.org/10.1002/mrm.29477
Article CAS PubMed Google Scholar
Jang A, Han PK, Ma C et al (2023) B 1 inhomogeneity-corrected T1 mapping and quantitative magnetization transfer imaging via simultaneously estimating B loch-S iegert shift and magnetization transfer effects. Magn Reson Med 90(5):1859–1873
Article CAS PubMed Google Scholar
Janve VA, Zu Z, Yao SY et al (2013) The radial diffusivity and magnetization transfer pool size ratio are sensitive markers for demyelination in a rat model of type III multiple sclerosis (MS) lesions. Neuroimage 74:298–305. https://doi.org/10.1016/j.neuroimage.2013.02.034
Article CAS PubMed Google Scholar
Ma Y, Shao H, Du J, Chang EY (2016) Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties. NMR Biomed 29(11):1546–1552. https://doi.org/10.1002/nbm.3609
Article CAS PubMed PubMed Central Google Scholar
Ma YJ, Jerban S, Jang H, Chang D, Chang EY, Du J (2020) Quantitative Ultrashort Echo Time (UTE) magnetic resonance imaging of bone: an update. Front Endocrinol 11:567417. https://doi.org/10.3389/fendo.2020.567417
Chang EY, Du J, Chung CB (2015) UTE imaging in the musculoskeletal system: UTE Imaging in the MSK System. J Magn Reson Imaging 41(4):870–883. https://doi.org/10.1002/jmri.24713
Ma YJ, Chang EY, Carl M, Du J (2018) Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke Cones sequence: 3D Multispoke UTE-Cones-MT Imaging. Magn Reson Med 79(2):692–700. https://doi.org/10.1002/mrm.26716
Article CAS PubMed Google Scholar
Ma Y, Tadros A, Du J, Chang EY (2018) Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone. Magn Reson Med 79(4):1941–1949. https://doi.org/10.1002/mrm.26846
Sritanyaratana N, Samsonov A, Mossahebi P, Wilson JJ, Block WF, Kijowski R (2014) Cross-relaxation imaging of human patellar cartilage in vivo at 3.0T. Osteoarthritis Cartilage 22(10):1568–1576. https://doi.org/10.1016/j.joca.2014.06.004
Article CAS PubMed PubMed Central Google Scholar
Portnoy S, Stanisz GJ (2007) Modeling pulsed magnetization transfer. Magn Reson Med 58(1):144–155. https://doi.org/10.1002/mrm.21244
Olesen JL, Ianus A, Østergaard L, Shemesh N, Jespersen SN (2023) Tensor denoising of multidimensional MRI data. Magn Reson Med 89(3):1160–1172. https://doi.org/10.1002/mrm.29478
Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29(6):759–766. https://doi.org/10.1002/mrm.1910290607
Article CAS PubMed Google Scholar
Sled JG, Pike GB (2000) Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences. J Magn Reson 145(1):24–36. https://doi.org/10.1006/jmre.2000.2059
Article CAS PubMed Google Scholar
Teixeira AGRP, Malik SJ, Hajnal JV (2019) Fast quantitative MRI using controlled saturation magnetization transfer. Magn Reson Med 81(2):907–920. https://doi.org/10.1002/mrm.27442
Rowley CD, Nelson MC, Campbell JSW, Leppert IR, Pike GB, Tardif CL (2024) Fast magnetization transfer saturation imaging of the brain using MP2RAGE T1 mapping. Magn Reson Med. https://doi.org/10.1002/mrm.30143
Marschner H, Pampel A, Müller R et al (2023) High-resolution magnetization-transfer imaging of post-mortem marmoset brain: comparisons with relaxometry and histology. Neuroimage 268:119860.
留言 (0)