Towards assessing and improving the reliability of ultrashort echo time quantitative magnetization transfer (UTE-qMT) MRI of cortical bone: In silico and ex vivo study

Wu AM, Bisignano C, James SL et al (2021) Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev 2(9):e580–e592. https://doi.org/10.1016/S2666-7568(21)00172-0

Article  Google Scholar 

Xiao PL, Cui AY, Hsu CJ et al (2022) Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis. Osteoporos Int 33(10):2137–2153. https://doi.org/10.1007/s00198-022-06454-3

Article  PubMed  Google Scholar 

Sun H, Saeedi P, Karuranga S et al (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183:109119. https://doi.org/10.1016/j.diabres.2021.109119

Article  PubMed  Google Scholar 

Schuit SCE, Van Der Klift M, Weel AEAM et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34(1):195–202. https://doi.org/10.1016/j.bone.2003.10.001

Article  CAS  PubMed  Google Scholar 

De Laet CEDH, Van Hout BA, Burger H, Hofman A, Pols HAP (1997) Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ 315(7102):221–225. https://doi.org/10.1136/bmj.315.7102.221

Article  PubMed  PubMed Central  Google Scholar 

Trémollieres FA, Pouillès JM, Drewniak N, Laparra J, Ribot CA, Dargent-Molina P (2010) Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res 25(5):1002–1009. https://doi.org/10.1002/jbmr.12

Article  PubMed  Google Scholar 

Lorentzon M (2020) The importance and possible clinical impact of measuring trabecular and cortical bone microstructure to improve fracture risk prediction. J Bone Miner Res 35(5):831–832. https://doi.org/10.1002/jbmr.3940

Article  PubMed  Google Scholar 

Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31(1):8–11. https://doi.org/10.1016/S8756-3282(02)00815-3

Article  CAS  PubMed  Google Scholar 

Unal M, Creecy A, Nyman JS (2018) The role of matrix composition in the mechanical behavior of bone. Curr Osteoporos Rep 16(3):205–215. https://doi.org/10.1007/s11914-018-0433-0

Article  PubMed  PubMed Central  Google Scholar 

Sled JG, Pike GB (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46(5):923–931. https://doi.org/10.1002/mrm.1278

Article  CAS  PubMed  Google Scholar 

Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64. https://doi.org/10.1002/nbm.683

Article  CAS  PubMed  Google Scholar 

Ramani A, Dalton C, Miller DH, Tofts PS, Barker GJ (2002) Precise estimate of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 20(10):721–731. https://doi.org/10.1016/S0730-725X(02)00598-2

Article  CAS  PubMed  Google Scholar 

Wu T, Byun NE, Wang F et al (2020) Longitudinal assessment of recovery after spinal cord injury with behavioral measures and diffusion, quantitative magnetization transfer and functional magnetic resonance imaging. NMR Biomed 33(4):e4216. https://doi.org/10.1002/nbm.4216

Article  PubMed  PubMed Central  Google Scholar 

Bryant ND, Li K, Does MD et al (2014) Multi-parametric MRI characterization of inflammation in murine skeletal muscle. NMR Biomed 27(6):716–725

Article  PubMed  PubMed Central  Google Scholar 

Shin SH, Wendland MF, Wang J, Velasquez M, Vandsburger MH (2023) Noninvasively differentiating acute and chronic nephropathies via multiparametric urea-CEST, nuclear Overhauser enhancement -CEST, and quantitative magnetization transfer MRI. Magn Reson Med 89(2):774–786. https://doi.org/10.1002/mrm.29477

Article  CAS  PubMed  Google Scholar 

Jang A, Han PK, Ma C et al (2023) B 1 inhomogeneity-corrected T1 mapping and quantitative magnetization transfer imaging via simultaneously estimating B loch-S iegert shift and magnetization transfer effects. Magn Reson Med 90(5):1859–1873

Article  CAS  PubMed  Google Scholar 

Janve VA, Zu Z, Yao SY et al (2013) The radial diffusivity and magnetization transfer pool size ratio are sensitive markers for demyelination in a rat model of type III multiple sclerosis (MS) lesions. Neuroimage 74:298–305. https://doi.org/10.1016/j.neuroimage.2013.02.034

Article  CAS  PubMed  Google Scholar 

Ma Y, Shao H, Du J, Chang EY (2016) Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties. NMR Biomed 29(11):1546–1552. https://doi.org/10.1002/nbm.3609

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma YJ, Jerban S, Jang H, Chang D, Chang EY, Du J (2020) Quantitative Ultrashort Echo Time (UTE) magnetic resonance imaging of bone: an update. Front Endocrinol 11:567417. https://doi.org/10.3389/fendo.2020.567417

Article  Google Scholar 

Chang EY, Du J, Chung CB (2015) UTE imaging in the musculoskeletal system: UTE Imaging in the MSK System. J Magn Reson Imaging 41(4):870–883. https://doi.org/10.1002/jmri.24713

Article  PubMed  Google Scholar 

Ma YJ, Chang EY, Carl M, Du J (2018) Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke Cones sequence: 3D Multispoke UTE-Cones-MT Imaging. Magn Reson Med 79(2):692–700. https://doi.org/10.1002/mrm.26716

Article  CAS  PubMed  Google Scholar 

Ma Y, Tadros A, Du J, Chang EY (2018) Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone. Magn Reson Med 79(4):1941–1949. https://doi.org/10.1002/mrm.26846

Article  PubMed  Google Scholar 

Sritanyaratana N, Samsonov A, Mossahebi P, Wilson JJ, Block WF, Kijowski R (2014) Cross-relaxation imaging of human patellar cartilage in vivo at 3.0T. Osteoarthritis Cartilage 22(10):1568–1576. https://doi.org/10.1016/j.joca.2014.06.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Portnoy S, Stanisz GJ (2007) Modeling pulsed magnetization transfer. Magn Reson Med 58(1):144–155. https://doi.org/10.1002/mrm.21244

Article  PubMed  Google Scholar 

Olesen JL, Ianus A, Østergaard L, Shemesh N, Jespersen SN (2023) Tensor denoising of multidimensional MRI data. Magn Reson Med 89(3):1160–1172. https://doi.org/10.1002/mrm.29478

Article  PubMed  Google Scholar 

Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29(6):759–766. https://doi.org/10.1002/mrm.1910290607

Article  CAS  PubMed  Google Scholar 

Sled JG, Pike GB (2000) Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences. J Magn Reson 145(1):24–36. https://doi.org/10.1006/jmre.2000.2059

Article  CAS  PubMed  Google Scholar 

Teixeira AGRP, Malik SJ, Hajnal JV (2019) Fast quantitative MRI using controlled saturation magnetization transfer. Magn Reson Med 81(2):907–920. https://doi.org/10.1002/mrm.27442

Article  Google Scholar 

Rowley CD, Nelson MC, Campbell JSW, Leppert IR, Pike GB, Tardif CL (2024) Fast magnetization transfer saturation imaging of the brain using MP2RAGE T1 mapping. Magn Reson Med. https://doi.org/10.1002/mrm.30143

Article  PubMed  Google Scholar 

Marschner H, Pampel A, Müller R et al (2023) High-resolution magnetization-transfer imaging of post-mortem marmoset brain: comparisons with relaxometry and histology. Neuroimage 268:119860.

留言 (0)

沒有登入
gif