Comprehensive analysis, diagnosis, prognosis, and cordycepin (CD) regulations for GSDME expressions in pan-cancers

Thompson DA, Weigel RJ. Characterization of a gene that is inversely correlated with estrogen receptor expression (ICERE-1) in breast carcinomas. Eur J Biochem. 1998;252(1):169–77.

Article  CAS  PubMed  Google Scholar 

van Camp G, Coucke P, Balemans W, van Velzen D, van de Bilt C, van Laer L, Smith RJ, Fukushima K, Padberg GW, Frants RR, et al. Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7p15. Hum Mol Genet. 1995;4(11):2159–63.

Article  PubMed  Google Scholar 

Van Laer L, Huizing EH, Verstreken M, van Zuijlen D, Wauters JG, Bossuyt PJ, Van de Heyning P, McGuirt WT, Smith RJ, Willems PJ, et al. Nonsyndromic hearing impairment is associated with a mutation in DFNA5. Nat Genet. 1998;20(2):194–7.

Article  PubMed  Google Scholar 

Huizing EH, van Bolhuis AH, Odenthal DW. Studies on progressive hereditary perceptive deafness in a family of 335 members. I. Genetical and general audiological results. Acta Otolaryngol. 1966;61(1):35–41.

Article  CAS  PubMed  Google Scholar 

Huizing EH, van Bolhuis AH, Odenthal DW. Studies on progressive hereditary perceptive deafness in a family of 335 members. II. Characteristic pattern of hearing deterioration. Acta Otolaryngol. 1966;61(1):161–7.

Article  CAS  PubMed  Google Scholar 

Mehl AL, Thomson V. Newborn hearing screening: the great omission. Pediatrics. 1998;101(1):E4.

Article  CAS  PubMed  Google Scholar 

Liu Y, Tan M, Cai L, Lv L, Chen Q, Chen W, Yang H, Xu Y. Genetic profiles of non-syndromic severe-profound hearing loss in Chinese Hans by whole-exome sequencing. Gene. 2022;819:146258.

Article  CAS  PubMed  Google Scholar 

Aboagye ET, Adadey SM, Wonkam-Tingang E, Amenga-Etego L, Awandare GA, Wonkam A. Global Distribution of Founder Variants Associated with non-syndromic hearing impairment. Genes (Basel). 2023;14(2):14.

Article  Google Scholar 

Cheng J, Li T, Tan Q, Fu J, Zhang L, Yang L, Zhou B, Yang L, Fu S, Linehan AG, et al. Novel, pathogenic insertion variant of GSDME associates with autosomal dominant hearing loss in a large Chinese pedigree. J Cell Mol Med. 2024;28(1):e18004.

Article  CAS  PubMed  Google Scholar 

Op de Beeck K, Van Camp G, Thys S, Cools N, Callebaut I, Vrijens K, Van Nassauw L, Van Tendeloo VF, Timmermans JP, Van Laer L. The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur J Hum Genet. 2011;19(9):965–73.

Article  CAS  PubMed  Google Scholar 

De Schutter E, Croes L, Ibrahim J, Pauwels P, Op de Beeck K, Vandenabeele P, Van Camp G. GSDME and its role in cancer: from behind the scenes to the front of the stage. Int J Cancer. 2021;148(12):2872–83.

Article  PubMed  Google Scholar 

Kim MS, Chang X, Yamashita K, Nagpal JK, Baek JH, Wu G, Trink B, Ratovitski EA, Mori M, Sidransky D. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene. 2008;27(25):3624–34.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Zhao S, Yang H, Chen Y, Feng H, An M, Chen B. Prognostic and immunological role of gasdermin E in Pan-cancer Analysis. Front Oncol. 2021;11:706266.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020;579(7799):415–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.

Article  CAS  PubMed  Google Scholar 

Kong Q, Zhang Z. Cancer-associated pyroptosis: a new license to kill tumor. Front Immunol. 2023;14:1082165.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol. 2023;14:1150879.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2023;20(6):366–87.

Article  PubMed  PubMed Central  Google Scholar 

Fu J, Song B, Du J, Liu S, He J, Xiao T, Zhou B, Li D, Liu X, He T, et al. Impact of BSG/CD147 gene expression on diagnostic, prognostic and therapeutic strategies towards malignant cancers and possible susceptibility to SARS-CoV-2. Mol Biol Rep. 2023;50(3):2269–81.

Article  CAS  PubMed  Google Scholar 

Liu S, Yang L, Fu J, Li T, Zhou B, Wang K, Wei C, Fu J. Comprehensive analysis, immune, and cordycepin regulation for SOX9 expression in pan-cancers and the matched healthy tissues. Front Immunol. 2023;14:1149986.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Dong X, Ding X, Liu G, Yang F, Song Q, Sun H, Chen G, Li S, Li Y, et al. Bufalin targeting CAMKK2 inhibits the occurrence and development of intrahepatic cholangiocarcinoma through Wnt/beta-catenin signal pathway. J Transl Med. 2023;21(1):900.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen G, Zhang H, Sun H, Ding X, Liu G, Yang F, Feng G, Dong X, Zhu Y, Wang X, et al. Bufalin targeting BFAR inhibits the occurrence and metastasis of gastric cancer through PI3K/AKT/mTOR signal pathway. Apoptosis. 2023;28(9–10):1390–405.

Article  CAS  PubMed  Google Scholar 

Cunningham KG, Manson W, Spring FS, Hutchinson SA. Cordycepin, a metabolic product isolated from cultures of cordyceps militaris (Linn.) Link. Nature. 1950;166(4231):949.

Article  CAS  PubMed  Google Scholar 

Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A systematic review of the Biological effects of Cordycepin. Molecules. 2021;26(19):5886.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Guo ZJ, Zhou XW. Chinese cordyceps: Bioactive Components, Antitumor effects and underlying Mechanism-A review. Molecules. 2022;27(19):6576.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan L, Song X, Ren Y, Wang M, Guo C, Guo D, Gu Y, Li Y, Cao Z, Deng Y. Anti-inflammatory effects of cordycepin: a review. Phytother Res 2020.

Das G, Shin HS, Leyva-Gomez G, Prado-Audelo MLD, Cortes H, Singh YD, Panda MK, Mishra AP, Nigam M, Saklani S, et al. Cordyceps spp.: a review on its Immune-Stimulatory and other Biological potentials. Front Pharmacol. 2020;11:602364.

Article  CAS  PubMed  Google Scholar 

Wei C, Yao X, Jiang Z, Wang Y, Zhang D, Chen X, Fan X, Xie C, Cheng J, Fu J, et al. Cordycepin inhibits drug-resistance non-small cell Lung Cancer Progression by activating AMPK Signaling Pathway. Pharmacol Res. 2019;144:79–89.

Article  CAS  PubMed  Google Scholar 

Wei C, Khan MA, Du J, Cheng J, Tania M, Leung EL, Fu J. Cordycepin inhibits triple-negative breast Cancer Cell Migration and Invasion by regulating EMT-TFs SLUG, TWIST1, SNAIL1, and ZEB1. Front Oncol. 2022;12:898583.

Article 

留言 (0)

沒有登入
gif