Whipp BJ, Mahler M. Dynamics of pulmonary gas exchange during exercise. In: West JB, editor. Pulmonary gas exchange vol II, organic environment. New York: Academic Press; 1980. p. 33–96.
Whipp BJ. Domains of aerobic function and their limiting parameters. In: Steinacker J, Ward S, editors. Physiology and pathophysiology of exercise Toler. New York: Plenum Press; 1996. p. 83–9.
Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2:933–96.
Gollnick PD, Hermansen L. Biochemical adaptations to exericse: anaerobic metabolism. Exerc Sport Sci Rev. 1973;1:1–44.
Article CAS PubMed Google Scholar
Iannetta D, Ingram CP, Keir DA, Murias JM. Methodological reconciliation of CP and MLSS and their agreement with the maximal metabolic steady state. Med Sci Sports Exerc. 2022;54:622–32.
Article CAS PubMed Google Scholar
Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard.’ Physiol Rep. 2019;7:1–16.
Mezzani A, Hamm LF, Jones AM, McBride PE, Moholdt T, Stone JA, et al. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation. J Cardiopulm Rehabil Prev. 2012;32:327–50.
Keir DA, Paterson DH, Kowalchuk JM, Murias JM. Using ramp-incremental \(\dot\)O2 responses for constant-intensity exercise selection. Appl Physiol Nutr Metab. 2018;43:882–92.
Iannetta D, Inglis EC, Pogliaghi S, Murias JM, Keir DA. A “step-ramp-step” protocol to identify the maximal metabolic steady state. Med Sci Sport Exerc. 2020;52:2011–9.
Keltz RR, Hartley T, Huitema AA, McKelvie RS, Suskin NG, Keir DA. Do clinical exercise tests permit exercise threshold identification in patients referred to cardiac rehabilitation? Can J Cardiol. 2023;39:1701–11.
Faricier R, Keltz RR, Hartley T, McKelvie RS, Suskin N, Prior PL, et al. Quantifying reliable change in \(\dot\)O2peak and submaximal exercise thresholds in cardiovascular disease. J Cardiopulm Rehabil. 2024;44:121–30.
Hansen D, Bonné K, Alders T, Hermans A, Copermans K, Swinnen H, et al. Exercise training intensity determination in cardiovascular rehabilitation: should the guidelines be reconsidered? Eur J Prev Cardiol. 2019;26:1921–8.
Keir DA, Pogliaghi S, Murias JM. The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state. Med Sci Sport Exerc. 2018;50:2375–8.
Broxterman RM, Craig JC, Richardson RS. The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50:2379–82.
Cross TJ, Sabapathy S. The respiratory compensation “point” as a determinant of uptake kinetics? Int J Sports Med. 2012;33:854.
Article CAS PubMed Google Scholar
Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sport Exerc. 2017;49:1452–60.
Caen K, Bourgois JG, Stuer L, Mermans V, Boone J. Can we accurately predict critical power and W′ from a single ramp incremental exercise test? Med Sci Sports Exerc. 2023;55:1401–8.
Galán-Rioja MÁ, González-Mohíno F, Poole DC, González-Ravé JM. Relative proximity of critical power and metabolic/ventilatory thresholds: systematic review and meta-analysis. Sport Med. 2020;50:1771–83.
Sheel AW, Scheinowitz M, Iannetta D, Murias JM, Keir DA, Balmain BN, et al. Commentary on viewpoint: time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise. J Appl Physiol. 2020;128:1450–5.
Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2:743–77.
Dempsey JA, Neder JA, Phillips DB, O’Donnell DE. The physiology and pathophysiology of exercise hyperpnea. Handb Clin Neurol. 2022;188:201–32.
Nicolò A, Marcora SM, Sacchetti M. Time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise. J Appl Physiol. 2020;128:1447–9.
Whipp BJ, Davis JA, Wasserman K. Ventilatory control of the “isocapnic buffering” region in rapidly-incremental exercise. Respir Physiol. 1989;76:357–67.
Article CAS PubMed Google Scholar
Iannetta D, Keir DA, Fontana FY, Inglis EC, Mattu AT, Paterson DH, et al. Evaluating the accuracy of using fixed ranges of METs to categorize exertional intensity in a heterogeneous group of healthy individuals: implications for cardiorespiratory fitness and health outcomes. Sport Med. 2021;51:2411–21.
Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020–7.
Article CAS PubMed Google Scholar
Stringer W, Casaburi R, Wasserman K. Acid-base regulation during exercise and recovery in humans. J Appl Physiol. 1992;72:954–61.
Article CAS PubMed Google Scholar
Wasserman K, van Kessel A, Burton G. Interaction mechanisms of physiological during exercise. J Appl Physiol. 1967;22:71–85.
Article CAS PubMed Google Scholar
Wasserman K, Beaver WL, Sun X-G, Stringer WW. Arterial H(+) regulation during exercise in humans. Respir Physiol Neurobiol. 2011;178:191–5.
Beneke R, Leithäuser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6:8–24.
Billat V, Sirvent P, Py G, Koralsztein J, Mercier J. The concept of maximal lactate steady state. Sport Med. 2003;33:407–26.
Itada N, Forster RE. Carbonic anhydrase activity in intact red blood cells measured with 18O exchange. J Biol Chem. 1977;252:3881–90.
Article CAS PubMed Google Scholar
Sowton E, Bloomfield D, Jones NL, Higgs BE, Campbell EJM. Recirculation time during exercise. Cardiovasc Res. 1968;2:341–5.
Article CAS PubMed Google Scholar
Austin BYC, Wray S. Extracellular pH signals affect rat vascular tone by rapid transduction into intracellular pH changes. J Physiol. 1993;466:1–8.
Article CAS PubMed PubMed Central Google Scholar
Buckler KJ, Vaughan-Jones RD, Peers C, Lagadic-Gossmann D, Nye PC. Effects of extracellular pH, PCO2 and HCO3- on intracellular pH in isolated type-I cells of the neonatal rat carotid body. J Physiol. 1991;444:703–21.
Article CAS PubMed PubMed Central Google Scholar
Torrance RW. Prolegomena: chemoreception upstream of transmitters. In: Zapata P, Eyzaguirre C, Torrance RW, editors. Front artery chemoreceptors. New York: Plenum Press; 1996. p. 13–38.
Buckler KJ, Williams BA, Honore E. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol. 2000;525:135–42.
Article CAS PubMed PubMed Central Google Scholar
Granger EA, Cooper TK, Hopkins SR, McKenzie DC, Dominelli P. Peripheral chemoresponsiveness during exercise in male athletes with exercise-induced arterial hypoxaemia. Exp Physiol. 2020;105:1960–70.
留言 (0)