The Respiratory Compensation Point: Mechanisms and Relation to the Maximal Metabolic Steady State

Whipp BJ, Mahler M. Dynamics of pulmonary gas exchange during exercise. In: West JB, editor. Pulmonary gas exchange vol II, organic environment. New York: Academic Press; 1980. p. 33–96.

Google Scholar 

Whipp BJ. Domains of aerobic function and their limiting parameters. In: Steinacker J, Ward S, editors. Physiology and pathophysiology of exercise Toler. New York: Plenum Press; 1996. p. 83–9.

Chapter  Google Scholar 

Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2:933–96.

Article  PubMed  Google Scholar 

Gollnick PD, Hermansen L. Biochemical adaptations to exericse: anaerobic metabolism. Exerc Sport Sci Rev. 1973;1:1–44.

Article  CAS  PubMed  Google Scholar 

Iannetta D, Ingram CP, Keir DA, Murias JM. Methodological reconciliation of CP and MLSS and their agreement with the maximal metabolic steady state. Med Sci Sports Exerc. 2022;54:622–32.

Article  CAS  PubMed  Google Scholar 

Jones AM, Burnley M, Black MI, Poole DC, Vanhatalo A. The maximal metabolic steady state: redefining the ‘gold standard.’ Physiol Rep. 2019;7:1–16.

Article  Google Scholar 

Mezzani A, Hamm LF, Jones AM, McBride PE, Moholdt T, Stone JA, et al. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation. J Cardiopulm Rehabil Prev. 2012;32:327–50.

Article  PubMed  Google Scholar 

Keir DA, Paterson DH, Kowalchuk JM, Murias JM. Using ramp-incremental \(\dot\)O2 responses for constant-intensity exercise selection. Appl Physiol Nutr Metab. 2018;43:882–92.

Iannetta D, Inglis EC, Pogliaghi S, Murias JM, Keir DA. A “step-ramp-step” protocol to identify the maximal metabolic steady state. Med Sci Sport Exerc. 2020;52:2011–9.

Article  CAS  Google Scholar 

Keltz RR, Hartley T, Huitema AA, McKelvie RS, Suskin NG, Keir DA. Do clinical exercise tests permit exercise threshold identification in patients referred to cardiac rehabilitation? Can J Cardiol. 2023;39:1701–11.

Article  PubMed  Google Scholar 

Faricier R, Keltz RR, Hartley T, McKelvie RS, Suskin N, Prior PL, et al. Quantifying reliable change in \(\dot\)O2peak and submaximal exercise thresholds in cardiovascular disease. J Cardiopulm Rehabil. 2024;44:121–30.

Hansen D, Bonné K, Alders T, Hermans A, Copermans K, Swinnen H, et al. Exercise training intensity determination in cardiovascular rehabilitation: should the guidelines be reconsidered? Eur J Prev Cardiol. 2019;26:1921–8.

Article  PubMed  Google Scholar 

Keir DA, Pogliaghi S, Murias JM. The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state. Med Sci Sport Exerc. 2018;50:2375–8.

Article  Google Scholar 

Broxterman RM, Craig JC, Richardson RS. The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state. Med Sci Sports Exerc. 2018;50:2379–82.

Article  PubMed  Google Scholar 

Cross TJ, Sabapathy S. The respiratory compensation “point” as a determinant of uptake kinetics? Int J Sports Med. 2012;33:854.

Article  CAS  PubMed  Google Scholar 

Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sport Exerc. 2017;49:1452–60.

Article  Google Scholar 

Caen K, Bourgois JG, Stuer L, Mermans V, Boone J. Can we accurately predict critical power and W′ from a single ramp incremental exercise test? Med Sci Sports Exerc. 2023;55:1401–8.

Article  PubMed  Google Scholar 

Galán-Rioja MÁ, González-Mohíno F, Poole DC, González-Ravé JM. Relative proximity of critical power and metabolic/ventilatory thresholds: systematic review and meta-analysis. Sport Med. 2020;50:1771–83.

Article  Google Scholar 

Sheel AW, Scheinowitz M, Iannetta D, Murias JM, Keir DA, Balmain BN, et al. Commentary on viewpoint: time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise. J Appl Physiol. 2020;128:1450–5.

Article  PubMed  Google Scholar 

Forster HV, Haouzi P, Dempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2:743–77.

Google Scholar 

Dempsey JA, Neder JA, Phillips DB, O’Donnell DE. The physiology and pathophysiology of exercise hyperpnea. Handb Clin Neurol. 2022;188:201–32.

Article  PubMed  Google Scholar 

Nicolò A, Marcora SM, Sacchetti M. Time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise. J Appl Physiol. 2020;128:1447–9.

Article  PubMed  Google Scholar 

Whipp BJ, Davis JA, Wasserman K. Ventilatory control of the “isocapnic buffering” region in rapidly-incremental exercise. Respir Physiol. 1989;76:357–67.

Article  CAS  PubMed  Google Scholar 

Iannetta D, Keir DA, Fontana FY, Inglis EC, Mattu AT, Paterson DH, et al. Evaluating the accuracy of using fixed ranges of METs to categorize exertional intensity in a heterogeneous group of healthy individuals: implications for cardiorespiratory fitness and health outcomes. Sport Med. 2021;51:2411–21.

Article  Google Scholar 

Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020–7.

Article  CAS  PubMed  Google Scholar 

Stringer W, Casaburi R, Wasserman K. Acid-base regulation during exercise and recovery in humans. J Appl Physiol. 1992;72:954–61.

Article  CAS  PubMed  Google Scholar 

Wasserman K, van Kessel A, Burton G. Interaction mechanisms of physiological during exercise. J Appl Physiol. 1967;22:71–85.

Article  CAS  PubMed  Google Scholar 

Wasserman K, Beaver WL, Sun X-G, Stringer WW. Arterial H(+) regulation during exercise in humans. Respir Physiol Neurobiol. 2011;178:191–5.

Article  PubMed  Google Scholar 

Beneke R, Leithäuser RM, Ochentel O. Blood lactate diagnostics in exercise testing and training. Int J Sports Physiol Perform. 2011;6:8–24.

Article  PubMed  Google Scholar 

Billat V, Sirvent P, Py G, Koralsztein J, Mercier J. The concept of maximal lactate steady state. Sport Med. 2003;33:407–26.

Article  Google Scholar 

Itada N, Forster RE. Carbonic anhydrase activity in intact red blood cells measured with 18O exchange. J Biol Chem. 1977;252:3881–90.

Article  CAS  PubMed  Google Scholar 

Sowton E, Bloomfield D, Jones NL, Higgs BE, Campbell EJM. Recirculation time during exercise. Cardiovasc Res. 1968;2:341–5.

Article  CAS  PubMed  Google Scholar 

Austin BYC, Wray S. Extracellular pH signals affect rat vascular tone by rapid transduction into intracellular pH changes. J Physiol. 1993;466:1–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buckler KJ, Vaughan-Jones RD, Peers C, Lagadic-Gossmann D, Nye PC. Effects of extracellular pH, PCO2 and HCO3- on intracellular pH in isolated type-I cells of the neonatal rat carotid body. J Physiol. 1991;444:703–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torrance RW. Prolegomena: chemoreception upstream of transmitters. In: Zapata P, Eyzaguirre C, Torrance RW, editors. Front artery chemoreceptors. New York: Plenum Press; 1996. p. 13–38.

Chapter  Google Scholar 

Buckler KJ, Williams BA, Honore E. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol. 2000;525:135–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Granger EA, Cooper TK, Hopkins SR, McKenzie DC, Dominelli P. Peripheral chemoresponsiveness during exercise in male athletes with exercise-induced arterial hypoxaemia. Exp Physiol. 2020;105:1960–70.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif