Development of QSARs for cysteine-containing di- and tripeptides with antioxidant activity:influence of the cysteine position

Mardani M, Badakné K, Farmani J, Aluko R (2023) Antioxidant peptides: overview of production, properties, and applications in food systems. Rev Food Sci Food Saf 22:46–106. https://doi.org/10.1111/1541-4337.13061

Article  Google Scholar 

Vandamme J, Nikiforov A, De Roose M et al (2016) Controlled accelerated oxidation of oleic acid using a DBD plasma: determination of volatile oxidation compounds. Food Res Inter 79:54–63. https://doi.org/10.1016/j.foodres.2015.11.028

Article  CAS  Google Scholar 

Velasco J, Dobarganes C, Márquez-Ruiz G (2010) Oxidative rancidity in foods and food quality. Woodhead Publishing Ser Food Sci Technol Nutr 3–32. https://doi.org/10.1533/9781845699260.1.3

López-Pedrouso M, Lorenzo J, Franco D (2022) Advances in Natural antioxidants for Food Improvement. Antioxid 11:1825. https://doi.org/10.3390/antiox11091825

Article  CAS  Google Scholar 

Barati E, Nikzad H, Karimian M (2020) Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 77:93–113. https://doi.org/10.1007/s00018-019-03253-8

Article  CAS  PubMed  Google Scholar 

Wang T, Zhao Q, Wang Q (2013) Production and antioxidant properties of Marine-derived bioactive peptides. Mar Prot and Pept Chap. 18. Wiley, Hoboken, Nueva Jersey. https://doi.org/10.1002/9781118375082.ch18., United States

Chapter  Google Scholar 

Wang L, Ma M, Yu Z, Du SK (2021) Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem 352:129399. https://doi.org/10.1016/j.foodchem.2021.129399

Article  CAS  PubMed  Google Scholar 

Iwao Y, Ishima Y, Yamada J et al (2022) Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life 64:450–454. https://doi.org/10.1002/iub.567

Article  CAS  Google Scholar 

Vega-Hissi EG, Andrada MF, Díaz MG, Garro-Martinez JC (2019) Computational study of the hydrogen peroxide scavenging mechanism of allyl methyl disulide, an antioxidant compound from garlic. Mol Div 23:985–995. https://doi.org/10.1007/s11030-019-09927-6

Article  CAS  Google Scholar 

Díaz MG, Andrada MF, Vega-Hissi EG, Garro-Martinez JC (2019) Density functional theory study of the oxidation reaction in the gas and aqueous phase of allyl methyl disulfide with hydroxyl radical. Struct Chem 30. https://doi.org/10.1007/s11224-018-1198-x

Anjum NA, Ahmad I, Mohmood I, Pacheco M et al (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—A review. Environ Exp Bot 75:307–324. https://doi.org/10.1016/j.envexpbot.2011.07.002

Article  CAS  Google Scholar 

Evaluation of Certain Food Additives and Contaminants (2013) Seventy-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ

Lu X, Zhang L, Sun Q, Song G, Huang J (2019) Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res Int 116:707–716. https://doi.org/10.1016/j.foodres.2018.09.001

Article  CAS  PubMed  Google Scholar 

Xu B, Dong Q, Yu C, Chen H et al (2024) Advances in Research on the activity evaluation, mechanism and structure-activity relationships of Natural antioxidant peptides. Antiox 13(4):479. https://doi.org/10.3390/antiox13040479

Article  CAS  Google Scholar 

Hu Y, Ni C, Wang Y, Yu X et al (2023) Research Progress on the Preparation and function of antioxidant peptides from Walnuts. Int J Mol Sci 24(19):14853. https://doi.org/10.3390/ijms241914853

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Li Y, Quan Z, Xiao P, Duan J-A (2024) New insights into antioxidant peptides: an overview of efficient screening, evaluation models, Molecular mechanisms, and applications. Antiox 13(2):203. https://doi.org/10.3390/antiox13020203

Article  CAS  Google Scholar 

Tian M, Fang B, Jiang L et al (2015) Structure-activity relationship of a series of antioxidanttripeptides derived from β-Lactoglobulin using QSAR modeling. Dairy Sci Technol 95:451–463. https://doi.org/10.1007/s13594-015-0226-5

Article  CAS  Google Scholar 

Chen N, Chen J, Yao B, Li Z (2018) QSAR Study on antioxidant tripeptides and the antioxidant activity of the designed tripeptides in Free Radical systems. Mol 23:1407. https://doi.org/10.3390/molecules23061407

Article  CAS  Google Scholar 

Uno S, Kodama D, Yukawa H et al (2020) Quantitative analysis of the relationship between structure and antioxidant activity of tripeptides. J Pept Sci 26:3238. https://doi.org/10.1002/psc.3238

Article  CAS  Google Scholar 

Du Z, Wang D, Li Y (2022) Comprehensive Evaluation and Comparison of Machine Learning Methods in QSAR modeling of antioxidant tripeptides. Am Chem Soc 7:25760–25771. https://doi.org/10.1021/acsomega.2c03062

Article  CAS  Google Scholar 

Lu X, Jia C, Gao J et al (2021) Structure–activity relationship and molecular docking analysis of cysteine-containing dipeptides as antioxidant and ACE inhibitory. Inter J Food Sci Technol 56:2789–2803. https://doi.org/10.1111/ijfs.14914

Article  CAS  Google Scholar 

Consonni V, Todeschini R, Pavan M (2002) Structure/Response correlations and Similarity/Diversity Analysis by GETAWAY descriptors. 2. Application of the novel 3D Molecular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 42:693–705. https://doi.org/10.1021/ci0155053

Article  CAS  PubMed  Google Scholar 

Consonni V, Todeschini R, Pavan M (2002) Structure/Response correlations and Similarity/Diversity Analysis by GETAWAY descriptors. 1. Theory of the novel 3D Molecular descriptors. J Chem Inf Comput Sci 42:682–692. https://doi.org/10.1021/ci015504a

Article  CAS  PubMed  Google Scholar 

Livingstone DJ (2000) The characterization of chemical structure using molecular properties. A survey. J Chem Inf Comput Sci 40:195–209. https://doi.org/10.1021/ci990162i

Article  CAS  PubMed  Google Scholar 

Todeschini RL, Lasagni M (1994) New Molecular descriptors for 2D- and 3D-Structures. Theory. J Chemom 8:263–273. https://doi.org/10.1002/cem.1180080405

Article  CAS  Google Scholar 

Gasteiger G, Sasowski J, Selzer P et al (1996) Chemical information in 3D space. J Chem Inf Comput Sci 36:1030–1037. https://doi.org/10.1021/ci960343

Article  CAS  Google Scholar 

Schur JH, Selzer P, Gasteiger J (1996) The coding of three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344. https://doi.org/10.1021/ci950164c

Article  Google Scholar 

Yap CW (2011) PaDEL-descriptor: an open-source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707

Article  CAS  PubMed  Google Scholar 

HyperChem Computational Chemistry Software Package; ver. 8.0: Hypercube, Inc (2004) Gainesville, FL, software http://www.hyper.com

Kaufman L, Rousseeuw P (2005) Finding groups in data: an introduction to Cluster Analysis. Wiley. https://doi.org/10.2307/2532178

Roy K, Kar S, Das RN (2015) A Primer on QSAR/QSPR Modeling. SpringerBriefs in Molecular Science. https://doi.org/10.1007/978-3-319-17281-1

Matlab 7.0. The MathWorks Inc. Natick, Massachusetts (2014) software http://www.mathworks.com

Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2010) Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J Chem Inf Model 50:1542–1548. https://doi.org/10.1021/ci100103r

Article  CAS  PubMed  Google Scholar 

Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2011) Advances in the replacement and enhanced replacement method in QSAR and QSPR theories. J Chem Inf Model 51:1575–1581. https://doi.org/10.1021/ci200079b

Article  CAS  PubMed  Google Scholar 

Hansch C, Sammes PG, Taylor JB (1990) Computers and the Medicinal chemist. Comprehensive Medicinal Chemistry, vol 4. Pergamon, Oxford, pp 33–58

Google Scholar 

Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1

Article  CAS  PubMed  Google Scholar 

Wold S, Eriksson L (1995) Statistical validation of qsar results. Chemometric Methods Mol Des 309–318. https://doi.org/10.1002/9783527615452.ch5

Fatemi MH, Ghareh Chahi Z (2012) QSPR-based estimation of the half-lives for polychlorinated biphenyl congeners. SAR and QSAR Environ Res 23:155–168 (2012). https://do

留言 (0)

沒有登入
gif