Mardani M, Badakné K, Farmani J, Aluko R (2023) Antioxidant peptides: overview of production, properties, and applications in food systems. Rev Food Sci Food Saf 22:46–106. https://doi.org/10.1111/1541-4337.13061
Vandamme J, Nikiforov A, De Roose M et al (2016) Controlled accelerated oxidation of oleic acid using a DBD plasma: determination of volatile oxidation compounds. Food Res Inter 79:54–63. https://doi.org/10.1016/j.foodres.2015.11.028
Velasco J, Dobarganes C, Márquez-Ruiz G (2010) Oxidative rancidity in foods and food quality. Woodhead Publishing Ser Food Sci Technol Nutr 3–32. https://doi.org/10.1533/9781845699260.1.3
López-Pedrouso M, Lorenzo J, Franco D (2022) Advances in Natural antioxidants for Food Improvement. Antioxid 11:1825. https://doi.org/10.3390/antiox11091825
Barati E, Nikzad H, Karimian M (2020) Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci 77:93–113. https://doi.org/10.1007/s00018-019-03253-8
Article CAS PubMed Google Scholar
Wang T, Zhao Q, Wang Q (2013) Production and antioxidant properties of Marine-derived bioactive peptides. Mar Prot and Pept Chap. 18. Wiley, Hoboken, Nueva Jersey. https://doi.org/10.1002/9781118375082.ch18., United States
Wang L, Ma M, Yu Z, Du SK (2021) Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem 352:129399. https://doi.org/10.1016/j.foodchem.2021.129399
Article CAS PubMed Google Scholar
Iwao Y, Ishima Y, Yamada J et al (2022) Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life 64:450–454. https://doi.org/10.1002/iub.567
Vega-Hissi EG, Andrada MF, Díaz MG, Garro-Martinez JC (2019) Computational study of the hydrogen peroxide scavenging mechanism of allyl methyl disulide, an antioxidant compound from garlic. Mol Div 23:985–995. https://doi.org/10.1007/s11030-019-09927-6
Díaz MG, Andrada MF, Vega-Hissi EG, Garro-Martinez JC (2019) Density functional theory study of the oxidation reaction in the gas and aqueous phase of allyl methyl disulfide with hydroxyl radical. Struct Chem 30. https://doi.org/10.1007/s11224-018-1198-x
Anjum NA, Ahmad I, Mohmood I, Pacheco M et al (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—A review. Environ Exp Bot 75:307–324. https://doi.org/10.1016/j.envexpbot.2011.07.002
Evaluation of Certain Food Additives and Contaminants (2013) Seventy-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ
Lu X, Zhang L, Sun Q, Song G, Huang J (2019) Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate. Food Res Int 116:707–716. https://doi.org/10.1016/j.foodres.2018.09.001
Article CAS PubMed Google Scholar
Xu B, Dong Q, Yu C, Chen H et al (2024) Advances in Research on the activity evaluation, mechanism and structure-activity relationships of Natural antioxidant peptides. Antiox 13(4):479. https://doi.org/10.3390/antiox13040479
Hu Y, Ni C, Wang Y, Yu X et al (2023) Research Progress on the Preparation and function of antioxidant peptides from Walnuts. Int J Mol Sci 24(19):14853. https://doi.org/10.3390/ijms241914853
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Li Y, Quan Z, Xiao P, Duan J-A (2024) New insights into antioxidant peptides: an overview of efficient screening, evaluation models, Molecular mechanisms, and applications. Antiox 13(2):203. https://doi.org/10.3390/antiox13020203
Tian M, Fang B, Jiang L et al (2015) Structure-activity relationship of a series of antioxidanttripeptides derived from β-Lactoglobulin using QSAR modeling. Dairy Sci Technol 95:451–463. https://doi.org/10.1007/s13594-015-0226-5
Chen N, Chen J, Yao B, Li Z (2018) QSAR Study on antioxidant tripeptides and the antioxidant activity of the designed tripeptides in Free Radical systems. Mol 23:1407. https://doi.org/10.3390/molecules23061407
Uno S, Kodama D, Yukawa H et al (2020) Quantitative analysis of the relationship between structure and antioxidant activity of tripeptides. J Pept Sci 26:3238. https://doi.org/10.1002/psc.3238
Du Z, Wang D, Li Y (2022) Comprehensive Evaluation and Comparison of Machine Learning Methods in QSAR modeling of antioxidant tripeptides. Am Chem Soc 7:25760–25771. https://doi.org/10.1021/acsomega.2c03062
Lu X, Jia C, Gao J et al (2021) Structure–activity relationship and molecular docking analysis of cysteine-containing dipeptides as antioxidant and ACE inhibitory. Inter J Food Sci Technol 56:2789–2803. https://doi.org/10.1111/ijfs.14914
Consonni V, Todeschini R, Pavan M (2002) Structure/Response correlations and Similarity/Diversity Analysis by GETAWAY descriptors. 2. Application of the novel 3D Molecular descriptors to QSAR/QSPR studies. J Chem Inf Comput Sci 42:693–705. https://doi.org/10.1021/ci0155053
Article CAS PubMed Google Scholar
Consonni V, Todeschini R, Pavan M (2002) Structure/Response correlations and Similarity/Diversity Analysis by GETAWAY descriptors. 1. Theory of the novel 3D Molecular descriptors. J Chem Inf Comput Sci 42:682–692. https://doi.org/10.1021/ci015504a
Article CAS PubMed Google Scholar
Livingstone DJ (2000) The characterization of chemical structure using molecular properties. A survey. J Chem Inf Comput Sci 40:195–209. https://doi.org/10.1021/ci990162i
Article CAS PubMed Google Scholar
Todeschini RL, Lasagni M (1994) New Molecular descriptors for 2D- and 3D-Structures. Theory. J Chemom 8:263–273. https://doi.org/10.1002/cem.1180080405
Gasteiger G, Sasowski J, Selzer P et al (1996) Chemical information in 3D space. J Chem Inf Comput Sci 36:1030–1037. https://doi.org/10.1021/ci960343
Schur JH, Selzer P, Gasteiger J (1996) The coding of three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344. https://doi.org/10.1021/ci950164c
Yap CW (2011) PaDEL-descriptor: an open-source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. https://doi.org/10.1002/jcc.21707
Article CAS PubMed Google Scholar
HyperChem Computational Chemistry Software Package; ver. 8.0: Hypercube, Inc (2004) Gainesville, FL, software http://www.hyper.com
Kaufman L, Rousseeuw P (2005) Finding groups in data: an introduction to Cluster Analysis. Wiley. https://doi.org/10.2307/2532178
Roy K, Kar S, Das RN (2015) A Primer on QSAR/QSPR Modeling. SpringerBriefs in Molecular Science. https://doi.org/10.1007/978-3-319-17281-1
Matlab 7.0. The MathWorks Inc. Natick, Massachusetts (2014) software http://www.mathworks.com
Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2010) Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J Chem Inf Model 50:1542–1548. https://doi.org/10.1021/ci100103r
Article CAS PubMed Google Scholar
Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2011) Advances in the replacement and enhanced replacement method in QSAR and QSPR theories. J Chem Inf Model 51:1575–1581. https://doi.org/10.1021/ci200079b
Article CAS PubMed Google Scholar
Hansch C, Sammes PG, Taylor JB (1990) Computers and the Medicinal chemist. Comprehensive Medicinal Chemistry, vol 4. Pergamon, Oxford, pp 33–58
Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
Article CAS PubMed Google Scholar
Wold S, Eriksson L (1995) Statistical validation of qsar results. Chemometric Methods Mol Des 309–318. https://doi.org/10.1002/9783527615452.ch5
Fatemi MH, Ghareh Chahi Z (2012) QSPR-based estimation of the half-lives for polychlorinated biphenyl congeners. SAR and QSAR Environ Res 23:155–168 (2012). https://do
留言 (0)