Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) Cancer Stat Facts: Ovarian Cancer. In: Natl. Cancer Institute, DCCPS, Surveill. Res. Progr. https://seer.cancer.gov/statfacts/html/ovary.html. Accessed 19 Oct 2023
Norquist BM, Harrell MI, Brady MF, et al. Inherited mutations in women with ovarian carcinoma. JAMA Oncol. 2016;2:482–90. https://doi.org/10.1001/jamaoncol.2015.5495.
Article PubMed PubMed Central Google Scholar
Goldgar DE, Fields P, Lewis CM, et al. A large kindred with 17q-linked breast and ovarian cancer: Genetic, phenotypic, and genealogical analysis. J Natl Cancer Inst. 1994;86:200–9. https://doi.org/10.1093/jnci/86.3.200.
Article CAS PubMed Google Scholar
Wooster R, Neuhausen SL, Mangion J, et al. Localization of a Breast Cancer Susceptibility Gene, BRCA2, to Chromosome 13q12-13. Science (80- ). 1994;265:78–81.
Bonadona V, Bonaıti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2013;305:2304–10.
Watson P, Vasen HFA, Mecklin JP, et al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer. 2008;123:444–9. https://doi.org/10.1002/ijc.23508.
Article CAS PubMed PubMed Central Google Scholar
Rafnar T, Gudbjartsson DF, Sulem P, et al. Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011;43:1104–7. https://doi.org/10.1038/ng.955.
Article CAS PubMed Google Scholar
Weber-Lassalle N, Hauke J, Ramser J, et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res. 2018;20:1–6. https://doi.org/10.1186/s13058-018-0935-9.
Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet. 2010;42:410–4. https://doi.org/10.1038/ng.569.
Article CAS PubMed Google Scholar
Yang X, Song H, Leslie G, et al. Ovarian and Breast Cancer Risks Associated with Pathogenic Variants in RAD51C and RAD51D. J Natl Cancer Inst. 2020;112:1242–50. https://doi.org/10.1093/jnci/djaa030.
Article CAS PubMed PubMed Central Google Scholar
Loveday C, Turnbull C, Ramsay E, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011;43:879–82. https://doi.org/10.1038/ng.893.
Article CAS PubMed PubMed Central Google Scholar
Yang X, Leslie G, Doroszuk A, et al. Cancer risks associated with germline PALB2 pathogenic variants: An international study of 524 families. J Clin Oncol. 2020;38:674–85. https://doi.org/10.1200/JCO.19.01907.
Article CAS PubMed Google Scholar
Song H, Dicks EM, Tyrer J, et al. Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer. J Med Genet. 2021;58:305–13. https://doi.org/10.1136/jmedgenet-2019-106739.
Article CAS PubMed Google Scholar
Kurian AW, Ward KC, Howlader N, et al. Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol. 2019;37:1305–15. https://doi.org/10.1200/JCO.18.01854.
Article CAS PubMed PubMed Central Google Scholar
Childers CP, Childers KK, Maggard-Gibbons M, Macinko J. National estimates of genetic testing in women with a history of breast or ovarian cancer. J Clin Oncol. 2017;35:3800–6. https://doi.org/10.1200/JCO.2017.73.6314.
Article PubMed PubMed Central Google Scholar
Swisher EM, Rayes N, Bowen D, et al. Remotely Delivered Cancer Genetic Testing in the Making Genetic Testing Accessible (MAGENTA) Trial. JAMA Oncol. 2023;98195:1–9. https://doi.org/10.1001/jamaoncol.2023.3748.
Lin J, Sharaf RN, Saganty R, et al. Achieving universal genetic assessment for women with ovarian cancer: Are we there yet? A systematic review and meta-analysis. Gynecol Oncol. 2021;162:506–16. https://doi.org/10.1016/j.ygyno.2021.05.011.
Article CAS PubMed PubMed Central Google Scholar
Samadder NJ, Riegert-Johnson D, Boardman L, et al. Comparison of Universal Genetic Testing vs Guideline-Directed Targeted Testing for Patients with Hereditary Cancer Syndrome. JAMA Oncol. 2021;7:230–7. https://doi.org/10.1001/jamaoncol.2020.6252.
Jones JC, Golafshar MA, Coston TW, et al. Universal Genetic Testing vs. Guideline-Directed Testing for Hereditary Cancer Syndromes Among Traditionally Underrepresented Patients in a Community Oncology Program. Cureus. 2023;15. https://doi.org/10.7759/cureus.37428
Esplin ED, Nielsen SM, Bristow SL, et al. Universal Germline Genetic Testing for Hereditary Cancer Syndromes in Patients With Solid Tumor Cancer. JCO Precis Oncol. 2022;1–7. https://doi.org/10.1200/po.21.00516
Yang S, Axilbund JE, O’Leary E, et al. Underdiagnosis of Hereditary Breast and Ovarian Cancer in Medicare Patients: Genetic Testing Criteria Miss the Mark. Ann Surg Oncol. 2018;25:2925–31. https://doi.org/10.1245/s10434-018-6621-4.
Beitsch PD, Whitworth PW, Hughes K, et al. Underdiagnosis of hereditary breast cancer: Are genetic testing guidelines a tool or an obstacle? J Clin Oncol. 2019;37:453–60. https://doi.org/10.1200/JCO.18.01631.
Green MF, Watson CH, Tait S, et al. Concordance Between Genomic Alterations Detected by Tumor and Germline Sequencing: Results from a Tertiary Care Academic Center Molecular Tumor Board. Oncologist. 2023;28:33–9. https://doi.org/10.1093/oncolo/oyac164.
Article PubMed PubMed Central Google Scholar
Stout LA, Hunter C, Schroeder C, et al. Clinically significant germline pathogenic variants are missed by tumor genomic sequencing. npj Genomic Med. 2023;8. https://doi.org/10.1038/s41525-023-00374-9
King MC, Levy-Lahad E, Lahad A. Population-based screening for BRCA1 and BRCA2: 2014 Lasker award. JAMA - J Am Med Assoc. 2014;312:1091–2. https://doi.org/10.1001/jama.2014.12483.
Manchanda R, Loggenberg K, Sanderson S, et al. Population testing for cancer predisposing BRCA1/BRCA2 mutations in the ashkenazi-jewish community: A randomized controlled trial. J Natl Cancer Inst. 2015;107:1–11. https://doi.org/10.1093/jnci/dju379.
Gaba F, Blyuss O, Liu X, et al. Population Study of Ovarian Cancer Risk Prediction. Cancers (Basel). 2020;12(5):1241. https://pubmed.ncbi.nlm.nih.gov/32429029/
Narod SA, Gojska N, Sun P, et al. The screen project: Guided direct-to-consumer genetic testing for breast cancer susceptibility in Canada. Cancers (Basel). 2021;13:1–11. https://doi.org/10.3390/cancers13081894.
Manchanda R, Sun L, Patel S, et al. Economic Evaluation of Population-Based BRCA1/BRCA2 Mutation Testing across Multiple Countries and Health Systems. Cancers (Basel). 2020;12:1–38.
Jervis S, Song H, Lee A, et al. Ovarian cancer familial relative risks by tumour subtypes and by known ovarian cancer genetic susceptibility variants. J Med Genet. 2014;51:108–13. https://doi.org/10.1136/jmedgenet-2013-102015.
Article CAS PubMed Google Scholar
Kerlikowske K, Brown JS, Grady DG. Should women with familial ovarian cancer undergo prophylactic oophorectomy? Obstet Gynecol. 1992;80:700–7.
Walsh T, Casadei S, Munson KM, et al. CRISPR-Cas9/long-read sequencing approach to identify cryptic mutations in BRCA1 and other tumour suppressor genes. J Med Genet. 2021;58:850–2. https://doi.org/10.1136/jmedgenet-2020-107320.
Article CAS PubMed Google Scholar
Adam F, Fluri M, Scherz A, Rabaglio M. Occurrence of variants of unknown clinical significance in genetic testing for hereditary breast and ovarian cancer syndrome and Lynch syndrome: a literature review and analytical observational retrospective cohort study. BMC Med Genomics. 2023;16:1–11. https://doi.org/10.1186/s12920-023-01437-7.
Ceyhan-Birsoy O, Jayakumaran G, Kemel Y, et al. Diagnostic yield and clinical relevance of expanded genetic testing for cancer patients. Genome Med. 2022;14:1–13. https://doi.org/10.1186/s13073-022-01101-2.
留言 (0)