Cellular and molecular basis of proximal small intestine disorders

Volk, N. & Lacy, B. Anatomy and physiology of the small bowel. Gastrointest. Endosc. Clin. N. Am. 27, 1–13 (2017).

Article  PubMed  Google Scholar 

Earley, Z. M. et al. GATA4 controls regionalization of tissue immunity and commensal-driven immunopathology. Immunity 56, 43–57.e10 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spencer, N. J. & Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 17, 338–351 (2020).

Article  PubMed  PubMed Central  Google Scholar 

McCarthy, N., Kraiczy, J. & Shivdasani, R. A. Cellular and molecular architecture of the intestinal stem cell niche. Nat. Cell Biol. 22, 1033–1041 (2020).

Article  CAS  PubMed  Google Scholar 

Heel, K. A., McCauley, R. D., Papadimitriou, J. M. & Hall, J. C. Review: Peyer’s patches. J. Gastroenterol. Hepatol. 12, 122–136 (1997).

Article  CAS  PubMed  Google Scholar 

McCarthy, N. et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 26, 391–402.e395 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hickey, J. W. et al. Organization of the human intestine at single-cell resolution. Nature 619, 572–584 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beumer, J. et al. BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Rep. 38, 110438 (2022).

Article  CAS  PubMed  Google Scholar 

McConnell, R. E., Benesh, A. E., Mao, S., Tabb, D. L. & Tyska, M. J. Proteomic analysis of the enterocyte brush border. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G914–G926 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busslinger, G. A. et al. Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Rep. 34, 108819 (2021).

Article  CAS  PubMed  Google Scholar 

Wallaeys, C., Garcia-Gonzalez, N. & Libert, C. Paneth cells as the cornerstones of intestinal and organismal health: a primer. EMBO Mol. Med. 15, e16427 (2023).

Article  CAS  PubMed  Google Scholar 

Lueschow, S. R. & McElroy, S. J. The Paneth cell: the curator and defender of the immature small intestine. Front. Immunol. 11, 587 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bany Bakar, R., Reimann, F. & Gribble, F. M. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat. Rev. Gastroenterol. Hepatol. 20, 784–796 (2023).

Article  CAS  PubMed  Google Scholar 

Beumer, J. et al. High-resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 181, 1291–1306.e1219 (2020).

Article  CAS  PubMed  Google Scholar 

Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192, 767–780 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hendel, S. K. et al. Tuft cells and their role in intestinal diseases. Front. Immunol. 13, 822867 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Powell, D. W., Pinchuk, I. V., Saada, J. I., Chen, X. & Mifflin, R. C. Mesenchymal cells of the intestinal lamina propria. Annu. Rev. Physiol. 73, 213–237 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e722 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holloway, E. M. et al. Mapping development of the human intestinal niche at single-cell resolution. Cell Stem Cell 28, 568–580.e564 (2021).

Article  CAS  PubMed  Google Scholar 

Ramirez, M., Pell, N., Mejias, M. & Fernandez, M. Pericyte biology in different organs. Adv. Exp. Med. Biol. 1122, 73–100 (2019).

Article  CAS  PubMed  Google Scholar 

Carloni, S. & Rescigno, M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin. Immunopathol. 44, 869–882 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Cifarelli, V. & Eichmann, A. The intestinal lymphatic system: functions and metabolic implications. Cell Mol. Gastroenterol. Hepatol. 7, 503–513 (2019).

Article  PubMed  Google Scholar 

Zarkada, G. et al. Chylomicrons regulate lacteal permeability and intestinal lipid absorption. Circ. Res. 133, 333–349 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedrich, M. et al. IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cadinu, P. et al. Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling. Cell 187, 2010–2028 e2030 (2024).

Article  CAS  PubMed  Google Scholar 

Thomsen, L. et al. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat. Med. 4, 848–851 (1998).

Article  CAS  PubMed  Google Scholar 

Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78.e16 (2020).

Article  CAS 

留言 (0)

沒有登入
gif