Karava V, Dotis J, Christoforidis A, Kondou A, Printza N (2020) Muscle-bone axis in children with chronic kidney disease: current knowledge and future perspectives. Pediatr Nephrol 36:3813–3327
Sun DF, Chen Y, Rabkin R (2006) Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia. Kidney Int 70:453–459
Article CAS PubMed Google Scholar
Bataille S, Chauveau P, Fouque D, Aparicio M, Koppe L (2021) Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transpl 36:1986–1993
Karava V, Dotis J, Christoforidis A, Liakopoulos V, Kondou A, Tsigaras G, Tsioni K, Kollios K, Printza N (2021) Association between insulin growth factor-1, bone mineral density, and frailty phenotype in children with chronic kidney disease. Pediatr Nephrol 36:1861–1870
Karava V, Goutou S, Dotis J, Kondou A, Charela E, Dadoudi O, Eleftheriadis T, Stefanidis I, Printza N (2022) Fatigue and quality of life in children with chronic kidney disease. Child (Basel) 9:1414
Meza K, Biswas S, Zhu YS, Gajjar A, Perelstein E, Kumar J, Akchurin O (2021) Tumor necrosis factor-alpha is associated with mineral bone disorder and growth impairment in children with chronic kidney disease. Pediatr Nephrol 36:1579–1587
Yamamura-Miyazaki N, Michigami T, Ozono K, Yamamoto K, Hasuike Y (2022) Factors associated with 1-year changes in serum fibroblast growth factor 23 levels in pediatric patients with chronic kidney disease. Clin Exp Nephrol 26:1014–1021
Article CAS PubMed Google Scholar
Yamada S, Arase H, Yoshida H, Kitamura H, Tokumoto M, Taniguchi M, Hirakata H, Tsuruya K, Nakano T, Kitazono T (2022) Malnutrition-inflammation Complex Syndrome and Bone fractures and Cardiovascular Disease events in patients undergoing hemodialysis: the Q-Cohort study. Kidney Med 4:100408
Article PubMed PubMed Central Google Scholar
Yamada S, Tsuruya K, Kitazono T, Nakano T (2022) Emerging cross-talks between chronic kidney disease-mineral and bone disorder (CKD-MBD) and malnutrition-inflammation complex syndrome (MICS) in patients receiving dialysis. Clin Exp Nephrol 26:613–629
Article CAS PubMed PubMed Central Google Scholar
Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta 1790:1049–1058
Article CAS PubMed PubMed Central Google Scholar
Prud’homme GJ, Kurt M, Wang Q (2022) Pathobiology of the Klotho Antiaging Protein and therapeutic considerations. Front Aging 3:931331
Article PubMed PubMed Central Google Scholar
Ewendt F, Feger M, Föller M (2021) Myostatin regulates the production of fibroblast growth factor 23 (FGF23) in UMR106 osteoblast-like cells. Pflugers Arch 473:969–976
Article CAS PubMed PubMed Central Google Scholar
Bär L, Feger M, Fajol A, Klotz LO, Zeng S, Lang F, Hocher B, Föller M (2018) Insulin suppresses the production of fibroblast growth factor 23 (FGF23). Proc Natl Acad Sci U S A 115:5804–5809
Article PubMed PubMed Central Google Scholar
Rubinek T, Modan-Moses D (2016) Klotho and the growth Hormone/Insulin-Like Growth factor 1 Axis: Novel insights into Complex interactions. Vitam Horm 101:85–118
Article CAS PubMed Google Scholar
Ohsawa Y, Ohtsubo H, Munekane A, Ohkubo K, Murakami T, Fujino M, Nishimatsu SI, Hagiwara H, Nishimura H, Kaneko R, Suzuki T, Tatsumi R, Mizunoya W, Hinohara A, Fukunaga M, Sunada Y (2023) Circulating α-Klotho counteracts transforming growth Factor-β-Induced Sarcopenia. Am J Pathol 193:591–607
Article CAS PubMed Google Scholar
Wolf I, Shahmoon S, Ben Ami M, Levy-Shraga Y, Mazor-Aronovitch K, Pinhas-Hamiel O, Yeshayahu Y, Hemi R, Kanety H, Rubinek T, Modan-Moses D (2014) Association between decreased klotho blood levels and organic growth hormone deficiency in children with growth impairment. PLoS ONE 9:e107174
Article PubMed PubMed Central Google Scholar
Haffner D, Grund A, Leifheit-Nestler M (2021) Renal effects of growth hormone in health and in kidney disease. Pediatr Nephrol 36:2511–2530
Article PubMed PubMed Central Google Scholar
Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637
Article PubMed PubMed Central Google Scholar
Karava V, Kondou A, Dotis J, Taparkou A, Farmaki E, Kollios K, Printza N (2004) Exploring systemic inflammation in children with chronic kidney disease: correlates of interleukin 6. Pediatr Nephrol 39:1567–1576
Choi SJ, Lee MS, Kang DH, Ko GJ, Lim HS, Yu BC, Park MY, Kim JK, Kim CH, Hwang SD, Kim JC, Won CW, An WS (2021) Myostatin/Appendicular Skeletal Muscle Mass (ASM) ratio, not myostatin, is Associated with Low Handgrip Strength in Community-Dwelling Older Women. Int J Environ Res Public Healt 18:7344
David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, Zumbrennen-Bullough KB, Sun CC, Lin HY, Babitt JL, Wolf M (2016) Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89:135–146
Article CAS PubMed PubMed Central Google Scholar
Egli-Spichtig D, Imenez Silva PH, Glaudemans B, Gehring N, Bettoni C, Zhang MYH, Pastor-Arroyo EM, Schönenberger D, Rajski M, Hoogewijs D, Knauf F, Misselwitz B, Frey-Wagner I, Rogler G, Ackermann D, Ponte B, Pruijm M, Leichtle A, Fiedler GM, Bochud M, Ballotta V, Hofmann S, Perwad F, Föller M, Lang F, Wenger RH, Frew I, Wagner CA (2019) Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation. Kidney Int 96:890–905
Article CAS PubMed Google Scholar
Durlacher-Betzer K, Hassan A, Levi R, Axelrod J, Silver J, Naveh-Many T (2018) Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney Int 94:315–325
Article CAS PubMed Google Scholar
Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH, Bazzano LA, Xie D, Kretzler M, Nessel L, Hamm LL, Negrea L, Leonard MB, Raj D, Wolf M, Chronic Renal Insufficiency Cohort (2012) Fibroblast growth factor 23 and inflammation in CKD. Clin J Am Soc Nephrol 7:1155–1162
Article PubMed PubMed Central Google Scholar
Navarro-González JF, Mora-Fernández C, Muros M, Herrera H, García J (2009) Mineral metabolism and inflammation in chronic kidney Disease patients: a cross-sectional study. Clin J Am Soc Nephrol 4:1646–1654
Article PubMed PubMed Central Google Scholar
Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, Rosenblatt KP, Tilton RG, Choudhary S (2011) Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes 60:1907–1916
Article CAS PubMed PubMed Central Google Scholar
Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, Egido J, Ortiz A, Sanz AB (2011) The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. J Am Soc Nephrol 22:1315–1325
Article CAS PubMed PubMed Central Google Scholar
Oh HJ, Nam BY, Lee MJ, Kim CH, Koo HM, Doh FM, Han JH, Kim EJ, Han JS, Park JT, Yoo TH, Kang SW, Han DS, Han SH (2015) Decreased circulating klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation. Perit Dial Int 35:43–51
Article CAS PubMed PubMed Central Google Scholar
Lisowska KA, Storoniak H, Soroczyńska-Cybula M, Maziewski M, Dębska-Ślizień A (2022) Serum levels of α-Klotho, inflammation-related cytokines, and Mortality in Hemodialysis patients. J Clin Med 11:6518
留言 (0)