Chromosomal instability as a driver of cancer progression

Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).

Article  CAS  PubMed  Google Scholar 

Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

Article  CAS  PubMed  Google Scholar 

Watkins, T. B. K. et al. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126–132 (2020). This study analyses 1,421 samples from 394 tumours across 22 tumour types to demonstrate that continuous CIN results in pervasive heterogeneity in somatic copy number alterations.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laughney, A. M., Elizalde, S., Genovese, G. & Bakhoum, S. F. Dynamics of tumor heterogeneity derived from clonal karyotypic evolution. Cell Rep. 12, 809–820 (2015).

Article  CAS  PubMed  Google Scholar 

Thompson, S. L. & Compton, D. A. Examining the link between chromosomal instability and aneuploidy in human cells. J. Cell Biol. 180, 665–672 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duncan, A. W. et al. Frequent aneuploidy among normal human hepatocytes. Gastroenterology 142, 25–28 (2012).

Article  PubMed  Google Scholar 

Rehen, S. K. et al. Constitutional aneuploidy in the normal human brain. J. Neurosci. 25, 2176–2180 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knouse, K. A., Wu, J., Whittaker, C. A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl Acad. Sci. USA 111, 13409–13414 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, S. et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 561, 551–555 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Rawi, D. H. et al. Targeting chromosomal instability in patients with cancer. Nat. Rev. Clin. Oncol. 45, 210–224 (2024).

Google Scholar 

Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyerson, M. & Pellman, D. Cancer genomes evolve by pulverizing single chromosomes. Cell 144, 9–10 (2011).

Article  CAS  PubMed  Google Scholar 

Krupina, K., Goginashvili, A. & Cleveland, D. W. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat. Rev. Genet. 25, 196–210 (2023).

Article  PubMed  Google Scholar 

Yi, E., Chamorro González, R., Henssen, A. G. & Verhaak, R. G. W. Extrachromosomal DNA amplifications in cancer. Nat. Rev. Genet. 23, 760–771 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, S., Bafna, V., Chang, H. Y. & Mischel, P. S. Extrachromosomal DNA: an emerging hallmark in human cancer. Annu. Rev. Pathol. 17, 367–386 (2022).

Article  CAS  PubMed  Google Scholar 

Mazzagatti, A., Engel, J. L. & Ly, P. Boveri and beyond: chromothripsis and genomic instability from mitotic errors. Mol. Cell 84, 55–69 (2024).

Article  CAS  PubMed  Google Scholar 

Yan, X., Mischel, P. & Chang, H. Extrachromosomal DNA in cancer. Nat. Rev. Cancer 24, 261–273 (2024).

Article  CAS  PubMed  Google Scholar 

Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kloosterman, W. P. & Cuppen, E. Chromothripsis in congenital disorders and cancer: similarities and differences. Curr. Opin. Cell Biol. 25, 341–348 (2013).

Article  CAS  PubMed  Google Scholar 

Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021).

Article  CAS  PubMed  Google Scholar 

Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2017).

Article  CAS  PubMed  Google Scholar 

Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Umbreit, N. T. et al. Mechanisms generating cancer genome complexity from a single cell division error. Science 368, eaba0712 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krokan, H. E. & Bjørås, M. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Tang, S., Stokasimov, E., Cui, Y. & Pellman, D. Breakage of cytoplasmic chromosomes by pathological DNA base excision repair. Nature 606, 930–936 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trivedi, P., Steele, C. D., Au, F. K. C., Alexandrov, L. B. & Cleveland, D. W. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. Nature 618, 1049–1056 (2023).

留言 (0)

沒有登入
gif