Fungal cellulases: a comprehensive review

Amândio MS, Rocha JM, Xavier AM. Fed-batch SSF with pre-saccharification as a strategy to reduce enzyme dosage in cellulosic ethanol production. Fuel. 2024;357: 129842.

Article  Google Scholar 

Anish R, Rahman MS, Rao M. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng. 2007;96(1):48–56.

Article  CAS  PubMed  Google Scholar 

Arja, M.-O., Cellulases in the textile industry. Industrial enzymes: structure, function and applications, 2007: 51–63.

Bagga PS, Sandhu DK. Cellulase formation by Aspergillus nidulans. J Ferment Technol. 1987;65(6):635–42.

Article  CAS  Google Scholar 

Baker RA, Wicker L. Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol. 1996;7(9):279–84.

Article  CAS  Google Scholar 

Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy. 2009;86(11):2273–82.

Article  CAS  Google Scholar 

Bansal N, et al. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 2012;32(7):1341–6.

Article  CAS  PubMed  Google Scholar 

Berlemont R. Distribution and diversity of enzymes for polysaccharide degradation in fungi. Sci Rep. 2017;7(1):1–11.

Article  CAS  Google Scholar 

Bhardwaj N, et al. Current perspective on production and applications of microbial cellulases: a review. Bioresour Bioprocess. 2021;8(1):95.

Article  PubMed  PubMed Central  Google Scholar 

Bhat M. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18(5):355–83.

Article  CAS  PubMed  Google Scholar 

Boutte TT, KL Sargent, and G Feng, Enzymatic dough conditioner and flavor improver for bakery products. 2009, Google Patents.

Brett CT, Waldron KW. Physiology and biochemistry of plant cell walls, vol. 2. Cham: Springer Science & Business Media; 1996.

Google Scholar 

Brijwani K, Oberoi HS, Vadlani PV. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 2010;45(1):120–8.

Article  CAS  Google Scholar 

Brown CJ, Johnson AK, Daughdrill GW. Comparing models of evolution for ordered and disordered proteins. Mol Biol Evol. 2010;27(3):609–21.

Article  CAS  PubMed  Google Scholar 

Buchert J et al. Paper industry. Trichoderma and gliocladium, Enzymes, biological control and commercial applications, 1998;2:343.

Cao Y, et al. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Mol Microbiol. 2017;105(1):65–83.

Article  CAS  PubMed  Google Scholar 

Carrard G, et al. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci. 2000;97(19):10342–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castro Ldos S, et al. Expression pattern of cellulolytic and xylanolytic genes regulated by transcriptional factors XYR1 and CRE1 are affected by carbon source in Trichoderma reesei. Gene Expr Patterns. 2014;14(2):88–95.

Article  PubMed  Google Scholar 

Celińska E, Nicaud J-M, Białas W. Hydrolytic secretome engineering in Yarrowia lipolytica for consolidated bioprocessing on polysaccharide resources: review on starch, cellulose, xylan, and inulin. Appl Microbiol Biotechnol. 2021;105:975–89.

Article  PubMed  PubMed Central  Google Scholar 

Chandra MS, Viswanath B, Reddy BR. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Indian J Microbiol. 2007;47(4):323–8.

Article  CAS  PubMed  Google Scholar 

Chandrasekaran M. Valorization of food processing by-products. New York: CRC Press; 2012.

Book  Google Scholar 

Chen L, et al. Characterization of the Ca(2+)—responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30. Mol Microbiol. 2016;100(3):560–75.

Article  CAS  PubMed  Google Scholar 

Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol. 2003;14(4):438–43.

Article  CAS  PubMed  Google Scholar 

Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6(11):850–61.

Article  CAS  PubMed  Google Scholar 

Daranagama ND, et al. Involvement of Xyr1 and Are1 for trichodermapepsin gene expression in response to cellulose and galactose in Trichoderma reesei. Curr Microbiol. 2020;77(8):1506–17.

Article  CAS  PubMed  Google Scholar 

Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci. 2009;5(6):578.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Almeida MN, et al. Cellulases and hemicellulases from endophytic acremonium species and its application on sugarcane bagasse hydrolysis. Appl Biochem Biotechnol. 2011;165(2):594–610.

Article  PubMed  Google Scholar 

Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag. 2001;42(11):1357–78.

Article  Google Scholar 

Deswal D, Khasa YP, Kuhad RC. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol. 2011;102(10):6065–72.

Article  CAS  PubMed  Google Scholar 

Dhillon GS, et al. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod. 2011;34(1):1160–7.

Article  CAS  Google Scholar 

Dutta T, et al. Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol. 2008;35(4):275–82.

Article  CAS  PubMed  Google Scholar 

Ellilä S, et al. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels. 2017;10(1):30.

Article  PubMed  PubMed Central  Google Scholar 

Falkoski DL, et al. Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresour Technol. 2013;130:296–305.

Article  CAS  PubMed  Google Scholar 

Fujii T, et al. Taxonomic revision of the cellulose-degrading fungus acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiol Lett. 2014;351(1):32–41.

Article  CAS  PubMed  Google Scholar 

Gao J, et al. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol. 2008;99(16):7623–9.

Article  CAS  PubMed  Google Scholar 

Gupta R, Mehta G, Deswal D, Sharma S, Jain KK, Kuhad RC, Singh A. Cellulases and their biotechnological applications. Biotechnol Environ Manag Resour Recov. 2013;89–106.

Article  Google Scholar 

Henriksson H, et al. The active sites of cellulases are involved in chiral recognition: a comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS Lett. 1996;390(3):339–44.

Article 

留言 (0)

沒有登入
gif