The diverging role of O-GlcNAc transferase in corticotroph and somatotroph adenomas

Ntali G, Wass JA (2018) Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 21:111–118. https://doi.org/10.1007/s11102-018-0869-3

Article  PubMed  Google Scholar 

Lee IH, Miller NR, Zan E et al (2015) Visual defects in patients with Pituitary adenomas: the myth of Bitemporal Hemianopsia. AJR Am J Roentgenol 205:W512–518. https://doi.org/10.2214/AJR.15.14527

Article  PubMed  Google Scholar 

Chang EF, Zada G, Kim S et al (2008) Long-term recurrence and mortality after surgery and adjuvant radiotherapy for nonfunctional pituitary adenomas. J Neurosurg 108:736–745. https://doi.org/10.3171/JNS/2008/108/4/0736

Article  PubMed  Google Scholar 

Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112:1603–1618. https://doi.org/10.1172/JCI20401

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tritos NA, Miller KK (2023) Diagnosis and management of Pituitary adenomas: a review. JAMA 329:1386–1398. https://doi.org/10.1001/jama.2023.5444

Article  CAS  PubMed  Google Scholar 

Tamagno G, Gahete MD (2022) Pituitary adenomas: the European Neuroendocrine Association’s young researcher Committee Overview. Springer International Publishing, Cham

Book  Google Scholar 

Thakker RV, Newey PJ, Walls GV et al (2012) Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 97:2990–3011. https://doi.org/10.1210/jc.2012-1230

Article  CAS  PubMed  Google Scholar 

Beckers A, Aaltonen LA, Daly AF, Karhu A (2013) Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 34:239–277. https://doi.org/10.1210/er.2012-1013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pappy AL, Savinkina A, Bicknese C et al (2019) Predictive modeling for pituitary adenomas: single center experience in 501 consecutive patients. Pituitary 22:520–531. https://doi.org/10.1007/s11102-019-00982-8

Article  PubMed  Google Scholar 

Raverot G, Burman P, McCormack A et al (2018) European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178:G1–G24. https://doi.org/10.1530/EJE-17-0796

Article  CAS  PubMed  Google Scholar 

Bond MR, Hanover JA (2013) O-GlcNAc cycling: a link between metabolism and chronic disease. Annu Rev Nutr 33:205–229. https://doi.org/10.1146/annurev-nutr-071812-161240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hart GW (2014) Three decades of research on O-GlcNAcylation - A major nutrient Sensor that regulates signaling, transcription and Cellular Metabolism. Front Endocrinol 5:183. https://doi.org/10.3389/fendo.2014.00183

Article  Google Scholar 

Wulff-Fuentes E, Berendt RR, Massman L et al (2021) The human O-GlcNAcome database and meta-analysis. Sci Data 8:25. https://doi.org/10.1038/s41597-021-00810-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanover JA, Chen W, Bond MR (2018) O-GlcNAc in cancer: an oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 50:155–173. https://doi.org/10.1007/s10863-018-9751-2

Article  CAS  PubMed  Google Scholar 

Massman LJ, Pereckas M, Zwagerman NT, Olivier-Van Stichelen S (2021) O-GlcNAcylation is essential for Rapid Pomc expression and cell proliferation in Corticotropic Tumor cells. Endocrinology 162:bqab178. https://doi.org/10.1210/endocr/bqab178

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petersenn S, Fleseriu M, Casanueva FF et al (2023) Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement. Nat Rev Endocrinol 19:722–740. https://doi.org/10.1038/s41574-023-00886-5

Article  PubMed  Google Scholar 

Fleseriu M, Auchus R, Bancos I et al (2021) Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol 9:847–875. https://doi.org/10.1016/S2213-8587(21)00235-7

Article  PubMed  PubMed Central  Google Scholar 

Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617 discussion 617–618. https://doi.org/10.1227/00006123-199310000-00008

Article  CAS  PubMed  Google Scholar 

Park S-K, Zhou X, Pendleton KE et al (2017) A conserved splicing silencer dynamically regulates O-GlcNAc transferase Intron Retention and O-GlcNAc Homeostasis. Cell Rep 20:1088–1099. https://doi.org/10.1016/j.celrep.2017.07.017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le Minh G, Esquea EM, Young RG et al (2023) On a sugar high: role of O-GlcNAcylation in cancer. J Biol Chem 299:105344. https://doi.org/10.1016/j.jbc.2023.105344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melmed S, Kaiser UB, Lopes MB et al (2022) Clinical Biology of the Pituitary Adenoma. Endocr Rev 43:1003–1037. https://doi.org/10.1210/endrev/bnac010

Article  PubMed  PubMed Central  Google Scholar 

Lu Q, Zhang X, Liang T, Bai X (2022) O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med Camb Mass 28:115. https://doi.org/10.1186/s10020-022-00544-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu C, Li J (2018) O-GlcNAc: a sweetheart of the cell cycle and DNA damage response. Front Endocrinol 9:415. https://doi.org/10.3389/fendo.2018.00415

Article  Google Scholar 

Cheng YU, Li H, Li J et al (2016) O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy. Oncol Lett 12:572–578. https://doi.org/10.3892/ol.2016.4647

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Wu Z, He J et al (2021) OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene 40:4859–4871. https://doi.org/10.1038/s41388-021-01901-7

Article  CAS  PubMed  Google Scholar 

Zhu Q, Wang H, Chai S et al (2023) O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation. Proc Natl Acad Sci U S A 120:e2216796120. https://doi.org/10.1073/pnas.2216796120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu Q, Zhou H, Wu L et al (2022) O-GlcNAcylation promotes pancreatic tumor growth by regulating malate dehydrogenase 1. Nat Chem Biol 18:1087–1095. https://doi.org/10.1038/s41589-022-01085-5

Article  CAS  PubMed  Google Scholar 

Durning SP, Flanagan-Steet H, Prasad N, Wells L (2016) O-Linked β-N-acetylglucosamine (O-GlcNAc) acts as a glucose sensor to Epigenetically regulate the Insulin Gene in pancreatic Beta cells. J Biol Chem 291:2107–2118. https://doi.org/10.1074/jbc.M115.693580

Article  CAS  PubMed  Google Scholar 

Gao Y, Miy

留言 (0)

沒有登入
gif