Ntali G, Wass JA (2018) Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 21:111–118. https://doi.org/10.1007/s11102-018-0869-3
Lee IH, Miller NR, Zan E et al (2015) Visual defects in patients with Pituitary adenomas: the myth of Bitemporal Hemianopsia. AJR Am J Roentgenol 205:W512–518. https://doi.org/10.2214/AJR.15.14527
Chang EF, Zada G, Kim S et al (2008) Long-term recurrence and mortality after surgery and adjuvant radiotherapy for nonfunctional pituitary adenomas. J Neurosurg 108:736–745. https://doi.org/10.3171/JNS/2008/108/4/0736
Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112:1603–1618. https://doi.org/10.1172/JCI20401
Article CAS PubMed PubMed Central Google Scholar
Tritos NA, Miller KK (2023) Diagnosis and management of Pituitary adenomas: a review. JAMA 329:1386–1398. https://doi.org/10.1001/jama.2023.5444
Article CAS PubMed Google Scholar
Tamagno G, Gahete MD (2022) Pituitary adenomas: the European Neuroendocrine Association’s young researcher Committee Overview. Springer International Publishing, Cham
Thakker RV, Newey PJ, Walls GV et al (2012) Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 97:2990–3011. https://doi.org/10.1210/jc.2012-1230
Article CAS PubMed Google Scholar
Beckers A, Aaltonen LA, Daly AF, Karhu A (2013) Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 34:239–277. https://doi.org/10.1210/er.2012-1013
Article CAS PubMed PubMed Central Google Scholar
Pappy AL, Savinkina A, Bicknese C et al (2019) Predictive modeling for pituitary adenomas: single center experience in 501 consecutive patients. Pituitary 22:520–531. https://doi.org/10.1007/s11102-019-00982-8
Raverot G, Burman P, McCormack A et al (2018) European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178:G1–G24. https://doi.org/10.1530/EJE-17-0796
Article CAS PubMed Google Scholar
Bond MR, Hanover JA (2013) O-GlcNAc cycling: a link between metabolism and chronic disease. Annu Rev Nutr 33:205–229. https://doi.org/10.1146/annurev-nutr-071812-161240
Article CAS PubMed PubMed Central Google Scholar
Hart GW (2014) Three decades of research on O-GlcNAcylation - A major nutrient Sensor that regulates signaling, transcription and Cellular Metabolism. Front Endocrinol 5:183. https://doi.org/10.3389/fendo.2014.00183
Wulff-Fuentes E, Berendt RR, Massman L et al (2021) The human O-GlcNAcome database and meta-analysis. Sci Data 8:25. https://doi.org/10.1038/s41597-021-00810-4
Article CAS PubMed PubMed Central Google Scholar
Hanover JA, Chen W, Bond MR (2018) O-GlcNAc in cancer: an oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 50:155–173. https://doi.org/10.1007/s10863-018-9751-2
Article CAS PubMed Google Scholar
Massman LJ, Pereckas M, Zwagerman NT, Olivier-Van Stichelen S (2021) O-GlcNAcylation is essential for Rapid Pomc expression and cell proliferation in Corticotropic Tumor cells. Endocrinology 162:bqab178. https://doi.org/10.1210/endocr/bqab178
Article CAS PubMed PubMed Central Google Scholar
Petersenn S, Fleseriu M, Casanueva FF et al (2023) Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement. Nat Rev Endocrinol 19:722–740. https://doi.org/10.1038/s41574-023-00886-5
Fleseriu M, Auchus R, Bancos I et al (2021) Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol 9:847–875. https://doi.org/10.1016/S2213-8587(21)00235-7
Article PubMed PubMed Central Google Scholar
Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617 discussion 617–618. https://doi.org/10.1227/00006123-199310000-00008
Article CAS PubMed Google Scholar
Park S-K, Zhou X, Pendleton KE et al (2017) A conserved splicing silencer dynamically regulates O-GlcNAc transferase Intron Retention and O-GlcNAc Homeostasis. Cell Rep 20:1088–1099. https://doi.org/10.1016/j.celrep.2017.07.017
Article CAS PubMed PubMed Central Google Scholar
Le Minh G, Esquea EM, Young RG et al (2023) On a sugar high: role of O-GlcNAcylation in cancer. J Biol Chem 299:105344. https://doi.org/10.1016/j.jbc.2023.105344
Article CAS PubMed PubMed Central Google Scholar
Melmed S, Kaiser UB, Lopes MB et al (2022) Clinical Biology of the Pituitary Adenoma. Endocr Rev 43:1003–1037. https://doi.org/10.1210/endrev/bnac010
Article PubMed PubMed Central Google Scholar
Lu Q, Zhang X, Liang T, Bai X (2022) O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med Camb Mass 28:115. https://doi.org/10.1186/s10020-022-00544-y
Article CAS PubMed PubMed Central Google Scholar
Liu C, Li J (2018) O-GlcNAc: a sweetheart of the cell cycle and DNA damage response. Front Endocrinol 9:415. https://doi.org/10.3389/fendo.2018.00415
Cheng YU, Li H, Li J et al (2016) O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy. Oncol Lett 12:572–578. https://doi.org/10.3892/ol.2016.4647
Article CAS PubMed PubMed Central Google Scholar
Li X, Wu Z, He J et al (2021) OGT regulated O-GlcNAcylation promotes papillary thyroid cancer malignancy via activating YAP. Oncogene 40:4859–4871. https://doi.org/10.1038/s41388-021-01901-7
Article CAS PubMed Google Scholar
Zhu Q, Wang H, Chai S et al (2023) O-GlcNAcylation promotes tumor immune evasion by inhibiting PD-L1 lysosomal degradation. Proc Natl Acad Sci U S A 120:e2216796120. https://doi.org/10.1073/pnas.2216796120
Article CAS PubMed PubMed Central Google Scholar
Zhu Q, Zhou H, Wu L et al (2022) O-GlcNAcylation promotes pancreatic tumor growth by regulating malate dehydrogenase 1. Nat Chem Biol 18:1087–1095. https://doi.org/10.1038/s41589-022-01085-5
Article CAS PubMed Google Scholar
Durning SP, Flanagan-Steet H, Prasad N, Wells L (2016) O-Linked β-N-acetylglucosamine (O-GlcNAc) acts as a glucose sensor to Epigenetically regulate the Insulin Gene in pancreatic Beta cells. J Biol Chem 291:2107–2118. https://doi.org/10.1074/jbc.M115.693580
Article CAS PubMed Google Scholar
Gao Y, Miy
留言 (0)