Intrasubject Variability in Intravenous and Oral Probes for Hepatic and First-Pass CYP3A Activity

Klyushova LS, Perepechaeva ML, Grishanova AY. The role of CYP3A in health and disease. Biomedicines. 2022;10:2686.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Iversen DB, Andersen NE, Dalgård Dunvald AC, Pottegård A, Stage TB. Drug metabolism and drug transport of the 100 most prescribed oral drugs. Basic Clin Pharmacol Toxicol. 2022;131:311–24.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol. 2020;94:3671–722.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu J, Wang Y, Ragueneau-Majlessi I. Pharmacokinetic drug-drug interactions with drugs approved by the US Food and Drug Administration in 2020: mechanistic understanding and clinical recommendations. Drug Metab Dispos. 2022;50:1–7.

Article  PubMed  Google Scholar 

Levy RH, Ragueneau-Majlessi I. Past, present, and future of drug-drug interactions. Clin Pharmacol Ther. 2019;105:1286–8.

Article  PubMed  Google Scholar 

Yang X, Pfuma Fletcher E, Huang SM, Zineh I, Madabushi R. Regulatory efforts to facilitate evaluation and clinical management of drug-drug interaction risks. Clin Pharmacol Ther. 2021;109:42–6.

Article  PubMed  Google Scholar 

Cox EJ, Rettie AE, Unadkat JD, Thummel KE, McCune JS, Paine MF. Adapting regulatory drug-drug interaction guidance to design clinical pharmacokinetic natural product-drug interaction studies: a NaPDI Center recommended approach. Clin Transl Sci. 2022;15:322–9.

Article  PubMed  Google Scholar 

Galetin A, Brouwer KLR, Tweedie D, Yoshida K, Sjöstedt N, Aleksunes L, et al. Membrane transporters in drug development and as determinants of precision medicine. Nat Rev Drug Discov. 2024;23(4):255–80.

Article  PubMed  CAS  Google Scholar 

Food and Drug Administration. Clinical drug interaction studies- Cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry. Food and Drug Administration, Center for Drug Evaluation and Research (CDER). 2020 https://www.fda.gov/media/134581/download.

International Council for Harmonisation. ICH Guideline M12 on drug interaction studies - Scientific guideline. 2022 www.ema.europa.eu/en/ich-m12-drug-interaction-studies-scientific-guideline.

Ministry of Labor and Welfare (Japan). Guideline on Drug Interaction for Drug Development and Appropriate Provision of Information, Notification No.0723-4, Pharmaceutical Evaluation Division, Pharmaceuticals Safety and Environmental Health Bureau, Japan. Ministry of Labor and Welfare; 2018. 2018 www.pmda.go.jp/files/000228122.pdf.

Viviani R, Berres J, Stingl JC. Phenotypic models of drug-drug-gene interactions mediated by cytochrome drug-metabolizing enzymes. Clin Pharmacol Ther. 2024. https://doi.org/10.1002/cpt.3188.

Article  PubMed  Google Scholar 

Watkins PB. Erythromycin breath test. Clin Pharmacol Ther. 2000;67:577–8.

PubMed  CAS  Google Scholar 

Mitome H, Sugiyama E, Sato H, Akira K. Synthesis of 13C-lidocaine as a probe of breath test for the evaluation of cytochrome P450 activity. Chem Pharm Bull (Tokyo). 2014;62:806–9.

Article  PubMed  CAS  Google Scholar 

Fuhr U, Jetter A, Kirchheiner J. Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther. 2007;81:270–83.

Article  PubMed  CAS  Google Scholar 

Hohmann N, Haefeli WE, Mikus G. CYP3A activity: towards dose adaptation to the individual. Expert Opin Drug Metab Toxicol. 2016;12:479–97.

Article  PubMed  CAS  Google Scholar 

Thummel KE, Shen DD, Podoll T, Kunze KL, Trager WF, Hartwell P, et al. Use of midazolam as a human cytochrome P450 3A probe: I. In vitro-in vivo correlations in liver transplant patients. J Pharmacol Exp Ther. 1994;271:549–56.

PubMed  CAS  Google Scholar 

Thummel KE, Shen DD, Podoll T, Kunze KL, Trager WF, Bacchi CE, et al. Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter- and intra-individual hepatic CYP3A variability following liver transplantation. J Pharmacol Exp Ther. 1994;271:557–66.

PubMed  CAS  Google Scholar 

Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos. 2010;38:981–7.

Article  PubMed  CAS  Google Scholar 

Food and Drug Administration. Guidance for industry: Drug interaction studies- study design, data analysis, implications for dosing, and labeling recommendations. 2012 https://www.regulations.gov/document/FDA-2006-D-0036-2.

Kharasch ED, Walker A, Hoffer C, Sheffels P. Intravenous and oral alfentanil as in vivo probes for hepatic and first-pass cytochrome P450 3A activity: noninvasive assessment using pupillary miosis. Clin Pharmacol Ther. 2004;76:452–66.

Article  PubMed  CAS  Google Scholar 

Kharasch ED, Walker A, Hoffer C, Sheffels P. Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimally invasive and noninvasive probes for hepatic and first-pass CYP3A activity. J Clin Pharmacol. 2005;45:1187–97.

Article  PubMed  CAS  Google Scholar 

Kharasch ED, Walker A, Isoherranen N, Hoffer C, Sheffels P, Thummel K, et al. Influence of CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of the cytochrome P4503A probes alfentanil and midazolam. Clin Pharmacol Ther. 2007;82:410–26.

Article  PubMed  CAS  Google Scholar 

Baririan N, Van Obbergh L, Desager JP, Verbeeck RK, Wallemacq P, Starkel P, et al. Alfentanil-induced miosis as a surrogate measure of alfentanil pharmacokinetics in patients with mild and moderate liver cirrhosis. Clin Pharmacokinet. 2007;46:261–70.

Article  PubMed  CAS  Google Scholar 

Guo Y, Logan HL, Glueck DH, Muller KE. Selecting a sample size for studies with repeated measures. BMC Med Res Methodol. 2013;13:100.

Article  PubMed  PubMed Central  Google Scholar 

Kharasch ED, Russell M, Garton K, Lentz G, Bowdle TA, Cox K. Assessment of cytochrome P450 3A4 activity during the menstrual cycle using alfentanil as a noninvasive probe. Anesthesiology. 1997;87:26–35.

Article  PubMed  CAS  Google Scholar 

Kharasch ED, Jubert C, Senn T, Bowdle TA, Thummel KT. Intraindividual variability in male hepatic CYP3A4 activity assessed by alfentanil and midazolam clearance. J Clin Pharmacol. 1999;39:664–9.

Article  PubMed  CAS  Google Scholar 

Kharasch ED, Hoffer C, Walker A, Sheffels P. Disposition and miotic effects of oral alfentanil: a potential noninvasive probe for first-pass cytochrome P4503A activity. Clin Pharmacol Ther. 2003;73:199–208.

Article  PubMed  CAS  Google Scholar 

Gorski JC, Vannaprasaht S, Hamman MA, Ambrosius WT, Bruce MA, Haehner-Daniels B, et al. The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Clin Pharmacol Ther. 2003;74:275–87.

Article  PubMed  CAS  Google Scholar 

Chaobal HN, Kharasch ED. Single point sampling for assessment of constitutive, induced and inhibited cytochrome P450 3A activity with alfentanil or midazolam. Clin Pharmacol Ther. 2005;78:529–39.

Article  PubMed  CAS  Google Scholar 

Kharasch ED, Francis A, London A, Frey K, Kim T, Blood J. Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimal and noninvasive probes for hepatic and first-pass CYP3A induction. Clin Pharmacol Ther. 2011;90:100–8.

Article  PubMed  CAS  Google Scholar 

Liljequist D, Elfving B, Skavberg RK. Intraclass correlation—a discussion and demonstration of basic features. PLoS One. 2019;14: e0219854.

Article  PubMed  PubMed Central  CAS  Google Scholar 

van Rongen A, Kervezee L, Brill M, van Meir H, den Hartigh J, Guchelaar HJ, et al. Population pharmacokinetic model characterizing 24-hour variation in the pharmacokinetics of oral and intravenous midazolam in healthy volunteers. CPT Pharmacometrics Syst Pharmacol. 2015;4:454–64.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif