CD28 co-stimulation: novel insights and applications in cancer immunotherapy

Callahan, M. K., Postow, M. A. & Wolchok, J. D. Targeting T cell co-receptors for cancer therapy. Immunity 44, 1069–1078 (2016).

Article  CAS  PubMed  Google Scholar 

Attanasio, J. & Wherry, E. J. Costimulatory and coinhibitory receptor pathways in infectious disease. Immunity 44, 1052–1068 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

Article  CAS  PubMed  Google Scholar 

Townsend, S. E. & Allison, J. P. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259, 368–370 (1993). Together with Chen et al. (1992), this important study shows that co-stimulation through CD28 can induce antitumour immunity.

Article  CAS  PubMed  Google Scholar 

Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

Article  CAS  PubMed  Google Scholar 

Kamphorst, A. O. et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355, 1423–1427 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017). Together with Kamphorst et al. (2017), this paper shows that CD28 is the main target of PD1 inhibition, which led to the re-emergence of CD28 as a therapeutic target in cancer.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006). This paper reports the failed phase I clinical trial of a CD28-superagonist antibody (TGN1412), which set back research into CD28 agonism for cancer therapy.

Article  CAS  PubMed  Google Scholar 

Hunig, T. The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat. Rev. Immunol. 12, 317–318 (2012). This paper provides a comprehensive description of lessons learned from the TGN1412 clinical trial that provides a basis for changes made to the way in which immunotherapies are clinically tested.

Article  PubMed  Google Scholar 

Horvath, C. et al. Storm forecasting: additional lessons from the CD28 superagonist TGN1412 trial. Nat. Rev. Immunol. 12, 740 (2012).

PubMed  Google Scholar 

Burke, K. P., Chaudhri, A., Freeman, G. J. & Sharpe, A. H. The B7:CD28 family and friends: unraveling coinhibitory interactions. Immunity 57, 223–244 (2024).

Article  CAS  PubMed  Google Scholar 

Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: from mechanism to therapy. Immunity 44, 973–988 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edner, N. M., Carlesso, G., Rush, J. S. & Walker, L. S. K. Targeting co-stimulatory molecules in autoimmune disease. Nat. Rev. Drug Discov. 19, 860–883 (2020).

Article  CAS  PubMed  Google Scholar 

Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

Article  CAS  PubMed  Google Scholar 

Hansen, J. A., Martin, P. J. & Nowinski, R. C. Monoclonal antibodies identifying a novel T-Cell antigen and Ia antigens of human lymphocytes. Immunogenetics 10, 247–260 (1980).

Article  Google Scholar 

Clark, E. A., Martin, P. J., Hansen, J. A. & Ledbetter, J. A. Evolution of epitopes on human and nonhuman primate lymphocyte cell surface antigens. Immunogenetics 18, 599–615 (1983).

Article  CAS  PubMed  Google Scholar 

Testi, R. & Lanier, L. L. Functional expression of CD28 on T cell antigen receptor γ/δ-bearing T lymphocytes. Eur. J. Immunol. 19, 185–188 (1989).

Article  CAS  PubMed  Google Scholar 

Kozbor, D., Moretta, A., Messner, H. A., Moretta, L. & Croce, C. M. Tp44 molecules involved in antigen-independent T cell activation are expressed on human plasma cells. J. Immunol. 138, 4128–4132 (1987).

Article  CAS  PubMed  Google Scholar 

Hara, T., Fu, S. M. & Hansen, J. A. Human T cell activation. II. A new activation pathway used by a major T cell population via a disulfide-bonded dimer of a 44 kilodalton polypeptide (9.3 antigen). J. Exp. Med. 161, 1513–1524 (1985).

Article  CAS  PubMed  Google Scholar 

Moretta, A., Pantaleo, G., Lopez-Botet, M. & Moretta, L. Involvement of T44 molecules in an antigen-independent pathway of T cell activation. Analysis of the correlations to the T cell antigen-receptor complex. J. Exp. Med. 162, 823–838 (1985).

Article  CAS  PubMed  Google Scholar 

Martin, P. J. et al. A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J. Immunol. 136, 3282–3287 (1986).

Article  CAS  PubMed  Google Scholar 

Weiss, A., Manger, B. & Imboden, J. Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J. Immunol. 137, 819–825 (1986).

Article  CAS  PubMed  Google Scholar 

June, C. H., Ledbetter, J. A., Gillespie, M. M., Lindsten, T. & Thompson, C. B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell Biol. 7, 4472–4481 (1987).

CAS  PubMed  PubMed Central  Google Scholar 

Lindsten, T., June, C. H., Ledbetter, J. A., Stella, G. & Thompson, C. B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244, 339–343 (1989).

Article  CAS  Google Scholar 

Azuma, M. et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366, 76–79 (1993).

Article  CAS  PubMed  Google Scholar 

Freedman, A. S., Freeman, G., Horowitz, J. C., Daley, J. & Nadler, L. M. B7, a B-cell-restricted antigen that identifies preactivated B cells. J. Immunol. 139, 3260–3267 (1987).

Article  CAS  PubMed  Google Scholar 

Freeman, G. J. et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262, 909–911 (1993).

Article  CAS  PubMed  Google Scholar 

Freeman, G. J. et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science 262, 907–909 (1993).

Article  CAS  PubMed  Google Scholar 

Thompson, C. B. et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc. Natl Acad. Sci. USA 86, 1333–1337 (1989).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bretscher, P. & Cohn, M. A theory of self-nonself discrimination. Science 169, 1042–1049 (1970).

Article  CAS  PubMed  Google Scholar 

Brunet, J. F. et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature 328, 267–270 (1987).

Article  CAS  PubMed  Google Scholar 

Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

留言 (0)

沒有登入
gif