Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications

Anas Boussaa S, Kheloufi A, Boutarek Zaourar N, Kerkar F (2016) Valorization of Algerian sand for photovoltaic application. 130

Aramini JM, Hamilton K, Ma LC, Swapna GVT, Leonard PG, Ladbury JE, Krug RM, Montelione GT (2014) 19F NMR reveals multiple conformations at the dimer interface of the non-structural protein 1 effector domain from Influenza A virus. Structure 22(4):515–515

Article  Google Scholar 

Ayranci E, Duman O (2004) Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food Chem 84(4):539–543

Article  Google Scholar 

Bégué J-P, Bonnet-Delpon D (2005) Chimie Bioorganique et médicinale du fluor. CNRS Editions

Boeszoermenyi A, Ogórek B, Jain A, Arthanari H, Wagner G (2020) The precious fluorine on the ring: fluorine NMR for biological systems. J Biomol NMR 74(8–9):365–379

Article  Google Scholar 

Brauer M, Sykes BD (1986) 19F nuclear magnetic resonance studies of selectively fluorinated derivatives of G-and F-actin. Biochemistry 25(8):2187–2191

Article  Google Scholar 

Bunker BC, Casey WH (2016) Glass dissolution and leaching. The Aqueous Chemistry of Oxides

Bunker BC, Arnold GW, Day DE, Bray PJ (1986) The effect of molecular structure on borosilicate glass leaching. J Non-cryst Solids 87(1–2):226–253

Article  ADS  Google Scholar 

Ceriani JM, Clayton RL, Schmersal LJ (1985) Method for increasing the chemical durability of borosilicate glass tubing and articles made therefrom

Chandra G, Singh DV, Mahato GK, Patel S (2023) Fluorine-a small magic bullet atom in the drug development: perspective to FDA approved and COVID-19 recommended drugs. Chem Papers 77(8):4085–410677

Article  Google Scholar 

Crowley PB, Kyne C, Monteith WB (2012) Simple and inexpensive incorporation of 19F-tryptophan for protein NMR spectroscopy. Chem Commun 48(86):10681–10683

Article  Google Scholar 

Dalvit C, Veronesi M, Vulpetti A (2020) Fluorine NMR functional screening: from purified enzymes to human intact living cells. J Biomol NMR 74(10–11):613–631

Article  Google Scholar 

De Maeyer EAP, Verbeeck RMH, Vercruysse CWJ (1999) Stoichiometry of the leaching process of fluoride-containing aluminosilicate glass-ionomer glasses. J Dent Res 78(7):1312–1318

Article  Google Scholar 

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

Article  Google Scholar 

Dolbier WR (2016) Guide to fluorine NMR for organic chemists

Elbatal FH, Ouis MA, Elbatal HA (2016) Comparative studies on the bioactivity of some borate glasses and glass–ceramics from the two systems: Na2O–CaO–B2O3 and NaF–CaF2–B2O3. Ceram Int 42(7):8247–8256

Article  Google Scholar 

Frankel GS, Vienna JD, Lian J, Scully JR, Gin S, Ryan JV, Wang J, Kim SH, Windl W, Du J (2018) A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. npj Materials Degradation 2018 2:1, 2(1), 1–17

Gimenez D, Phelan A, Murphy CD, Cobb SL (2021) 19F NMR as a tool in chemical biology. Beilstein J Org Chem 17:293–293

Article  Google Scholar 

Götze J, Pan Y, Müller A (2021) Mineralogy and mineral chemistry of quartz: a review. Mineral Mag 85(5):639–664

Article  Google Scholar 

Gronenborn AM (2022) Small, but powerful and attractive: 19F in biomolecular NMR. Structure/Folding Des 30:6–14

Google Scholar 

Guranowski A (1990) Fluoride is a strong and specific inhibitor of Ap4A hydrolases. FEBS Lett 262(2):205–208

Article  Google Scholar 

Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D (2020) Next generation organofluorine containing blockbuster drugs. J Fluorine Chem 239:109639–109639

Article  Google Scholar 

Hasanuzzaman M, Rafferty A, Sajjia M, Olabi AG (2016) Properties of glass materials. Ref Module Mater Sci Mater Eng

Heller GT, Shukla VK, Figueiredo AM, Hansen DF (2024) Picosecond dynamics of a small molecule in its bound state with an intrinsically disordered protein. J Am Chem Soc 15:12–12

Google Scholar 

Helmus JJ, Jaroniec CP (2013) Nmrglue: an open source Python package for the analysis of multidimensional NMR data. J Biomol NMR 55(4):355–367

Article  Google Scholar 

Jang S, Kim H (2020) Direct chiral 19F NMR analysis of fluorine-containing analytes and its application to simultaneous chiral analysis. Org Lett 22(20):7804–7808

Article  Google Scholar 

Kim TH, Chung KY, Manglik A, Hansen AL, Dror RO, Mildorf TJ, Shaw DE, Kobilka BK, Prosser RS (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J Am Chem Soc 135(25):9465–9474

Article  Google Scholar 

Li C, Wang G-F, Wang Y, Creager-Allen R, Lutz EA, Scronce H, Slade KM, Ruf RAS, Mehl RA, Pielak GJ (2010) Protein 19F NMR in Escherichia coli. J Am Chem Soc 132(1):321–327

Article  Google Scholar 

Lu M, Ishima R, Polenova T, Gronenborn AM (2019) 19F NMR relaxation studies of fluorosubstituted tryptophans. J Biomol NMR 73(8–9):401–409

Article  Google Scholar 

Maxwell M, Tan YJ, Lee R, Huber T, Otting G (2023) Electrostatic contribution to 19F chemical shifts in fluorotryptophans in proteins. Biochemistry

Moynihan CT, Loehr SR (1988) Chemical durability of fluoride glasses. Mater Sci Forum 32–33:243–253

Google Scholar 

Müller K, Faeh C, Diederich F (2007) Fluorine in pharmaceuticals: looking beyond intuition. Science 317(5846):1881–1886

Article  ADS  Google Scholar 

Nartowski KP, Malhotra D, Hawarden LE, Sibik J, Iuga D, Zeitler JA, Fábián L, Khimyak YZ (2016) 19F NMR spectroscopy as a highly sensitive method for the direct monitoring of confined crystallization within nanoporous materials. Angewandte Chemie

Ojima I (2009) Fluorine in medicinal chemistry and chemical biology

Overbeck JH, Kremer W, Sprangers R (2020) A suite of 19F based relaxation dispersion experiments to assess biomolecular motions. J Biomol NMR 74(12):753–766

Article  Google Scholar 

Pham LBT, Costantino A, Barbieri L, Calderone V, Luchinat E, Banci L (2023) Direct expression of fluorinated proteins in human cells for 19F in-cell NMR spectroscopy. J Am Chem Soc 145(2):1389–1399

Article  Google Scholar 

Picard LP, Prosser RS (2021) Advances in the study of GPCRs by 19F NMR. Curr Opin Struct Biol 69:169–176

Article  Google Scholar 

Qin J, Chai G, Brewer JM, Lovelace LL, Lebioda L (2006) Fluoride inhibition of enolase: crystal structure and thermodynamics. Biochemistry 45(3):793–793

Article  Google Scholar 

Rüdisser SH, Goldberg N, Ebert M-O, Kovacs H, Gossert AD (2020) Efficient affinity ranking of fluorinated ligands by 19F NMR: CSAR and FastCSAR. J Biomol NMR 74(10–11):579–594

Article  Google Scholar 

Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JWM (2011) Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 24(2):114–129

Article  Google Scholar 

Saunders C, Khaled MB, Weaver JD, Tantillo DJ (2018) Prediction of 19F NMR chemical shifts for fluorinated aromatic compounds. J Org Chem 83(6):3220–3225

Article  Google Scholar 

Takusagawa N, Yamamoto K, Kitajima K (1987) Structure of porous glass prepared from fluorine-containing sodium borosilicate glasses. J Non-cryst Solids 95–96PART 2:1055–1062

Article  ADS  Google Scholar 

Varshneya AK, Mauro JC (2019) Glass microstructure: phase separation and liquid immiscibility. Fundamentals Inorg Glasses, 71–100

Xu C, Wan Y, Chen D, Gao C, Yin H, Fetherston D, Kupce E, Lopez G, Ameduri B, Twum EB, Wyzgoski FJ, Li X, McCord EF, Rinaldi PL (2017) 19F DOSY diffusion-NMR spectroscopy of fluoropolymers. Magn Reson Chem 55(5):472–484

Article  Google Scholar 

Zhu W, Guseman AJ, Bhinderwala F, Lu M, Su XC, Gronenborn AM (2022) Visualizing proteins in mammalian cells by 19F NMR spectroscopy. Angew Chem Int Ed 61(23)

留言 (0)

沒有登入
gif