Micelles-Encapsulated with Azithromycin and Ibuprofen for Synergistic Antibacterial at Different pH

Arora SC, Sharma PK, Irchhaiya R, Khatkar A, Singh N, Gagoria J. Development, characterization and solubility study of solid dispersions of azithromycin dihydrate by solvent evaporation method. J Adv Pharm Tech Res. 2010;1(2):221–8. https://doi.org/10.4103/0110-5558.72427.

Article  CAS  Google Scholar 

Atale N, Gupta S, Yadav UCS, Rani V. Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. J Microsc. 2014;255(1):7–19. https://doi.org/10.1111/jmi.12133.

Article  CAS  PubMed  Google Scholar 

Babu BM, Mihaela M, Ramanan K. Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes. J Am Chem Soc. 2012;134(48):19669–76. https://doi.org/10.1021/ja3064342.

Article  CAS  Google Scholar 

Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized particles designed for targeted delivery. Polym (Basel). 2021;13(12). https://doi.org/10.3390/polym13122022. 2022, Article 2022.

Beach JM, Champney WS. An examination of the inhibitory effects of three antibiotics in combination on ribosome biosynthesis in Staphylococcus aureus. Arch Microbiol. 2014;196(4):249–60. https://doi.org/10.1007/s00203-014-0963-5.

Article  CAS  PubMed  Google Scholar 

Boggara MB, Krishnamoorti R. Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes: a Molecular Dynamics Simulation Study. Biophys J. 2009;98(4):586–95. https://doi.org/10.1016/j.bpj.2009.10.046.

Article  CAS  Google Scholar 

Chan EWL, Yee ZY, Raja I, Yap JKY. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. J Global Antimicrob Resist. 2017;10:70–4. https://doi.org/10.1016/j.jgar.2017.03.012.

Article  Google Scholar 

Chang Y, Chu I. Methoxy poly(ethylene glycol)- b -poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur Polymer J. 2008;44(12):3922–30. https://doi.org/10.1016/j.eurpolymj.2008.09.021.

Article  CAS  Google Scholar 

Chen S, Guo H, Cui M, Huang R, Su R, Qi W, He Z. Interaction of particles with mucosae and cell membranes. Colloids Surf B: Biointerfaces. 2020;186:110657. https://doi.org/10.1016/j.colsurfb.2019.110657.

Article  CAS  PubMed  Google Scholar 

Chowdhury B, Adak M, Bose SK. Flurbiprofen, a unique non-steroidal anti-inflammatory drug with antimicrobial activity against Trichophyton, Microsporum and Epidermophyton species. Lett Appl Microbiol. 2003;37(2):158–61. https://doi.org/10.1046/j.1472-765x.2003.01370.x.

Article  CAS  PubMed  Google Scholar 

Dey S, Bishayi B. Killing of Staphylococcus aureus in murine macrophages by chloroquine used alone and in combination with ciprofloxacin or azithromycin. J Inflamm Res. 2015;8:29–47. https://doi.org/10.2147/JIR.S76045.

Article  PubMed  PubMed Central  Google Scholar 

Dusica M, Jasmina L, Adi E, Radoslav S. Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm. 2007;65(3):270–81. https://doi.org/10.1016/j.ejpb.2006.08.011.

Article  CAS  Google Scholar 

Elvers KT, Wright SJL. Antibacterial activity of the anti-inflammatory compound ibuprofen. Lett Appl Microbiol. 1995;20(2):82–4. https://doi.org/10.1111/j.1472-765X.1995.tb01291.x.

Article  CAS  PubMed  Google Scholar 

Eugenia SB, Anna CM, Rami Q, Elena ML. Soft tissue infection by probable community-acquired methicillin-resistant Staphylococcus aureus. Rev Argent Microbiol. 2013;45(1):61. https://doi.org/10.2147/OTT.S44474.

Article  CAS  Google Scholar 

Fox CB, Uibel RH, Harris JM. Detection of drug – membrane interactions in individual phospholipid vesicles by Confocal Raman Microscopy. Anal Chem. 2006;78(14):4918–24. https://doi.org/10.1021/ac0605290.

Article  CAS  PubMed  Google Scholar 

Gui Z, Wang H, Ding T, Zhu W, Zhuang X, Chu W. Azithromycin reduces the production of α-hemolysin and biofilm formation in Staphylococcus aureus. Indian J Microbiol. 2014;54(1):114–7. https://doi.org/10.1007/s12088-013-0438-4.

Article  CAS  PubMed  Google Scholar 

Helen L, Faquan Z, Mike D, Christine A. Methoxy poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules. 2005;6(6):3119–28. https://doi.org/10.1021/bm050451h.

Article  CAS  Google Scholar 

Hull MC, Cambrea LR, Hovis JS. Infrared spectroscopy of fluid lipid bilayers. Anal Chem. 2005;77(18):6096–9. https://doi.org/10.1021/ac050990c.

Article  CAS  PubMed  Google Scholar 

Jayaseelan VP. In silico validation of non-antibiotic drugs, acetaminophen and ibuprofen as antibacterial agents against red complex pathogens. J Periodontol. 2019;90(1):1441–8. https://doi.org/10.1002/JPER.18-0673.

Article  CAS  Google Scholar 

Khosro A, Golrokh K, Shahriar P, Farzaneh L. Anti Pneumococcal activity of azithromycin-eudragit RS100 Nano-formulations. Adv Pharm Bull. 2016;6(3):455–9. https://doi.org/10.15171/apb.2016.059.

Article  CAS  Google Scholar 

Kohita H, Matsushita Y, Moriguchi I. Binding of carprofen to human and bovine serum albumins. Chem Pharm Bull. 1994;42(4):937–40. https://doi.org/10.1248/cpb.42.937.

Article  CAS  Google Scholar 

Kremkow J, Luck M, Huster D, Muller P, Scheidt HA. Membrane Interaction of Ibuprofen with cholesterol-containing lipid membranes. Biomolecules. 2020;10(10):1384. https://doi.org/10.3390/biom10101384.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee C, Su L, Liu J, Chang C, Chen R, Yang K. Aspirin enhances opsonophagocytosis and is associated to a lower risk for Klebsiella pneumoniaeinvasive syndrome. BMC Infect Dis. 2014;14(1):47. https://doi.org/10.1186/1471-2334-14-47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemaire S, Van Bambeke F, Tulkens PM. Cellular accumulation and pharmacodynamic evaluation of the intracellular activity of CEM-101, a novel fluoroketolide, against Staphylococcus aureus, Listeria monocytogenes, and Legionella pneumophila in human THP-1 macrophages. Antimicrob Agents Chemother. 2009;53(9):3734–43. https://doi.org/10.1128/aac.00203-09.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marique A, Roelf O, Wilna L, Josias H. Amorphous azithromycin with improved aqueous solubility and intestinal membrane permeability. Drug Dev Ind Pharm. 2015;41(7):1100–8. https://doi.org/10.3109/03639045.2014.931967.

Article  CAS  Google Scholar 

Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M, Nokhodchi A. Development of azithromycin–PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B: Biointerfaces. 2010;80(1):34–9. https://doi.org/10.1016/j.colsurfb.2010.05.027.

Article  CAS  PubMed  Google Scholar 

Morteza A, Farzaneh L, Parvin Z-M, Ghobad M, Hadi V. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv Pharm Bull. 2012;2(1):17–24. https://doi.org/10.1093/nar/gks1194.

Article  CAS  Google Scholar 

Obad J, Suskovic J, Kos B. Antimicrobial activity of ibuprofen: new perspectives on an old non-antibiotic drug. Eur J Pharm Sci. 2015;71:93–8. https://doi.org/10.1016/j.ejps.2015.02.011.

Article  CAS  PubMed  Google Scholar 

Oliveira IM, Borges A, Borges F, Simoes M. Repurposing ibuprofen to control Staphylococcus aureus biofilms. Eur J Med Chem. 2019;166:197–205. https://doi.org/10.1016/j.ejmech.2019.01.046.

Article  CAS  PubMed  Google Scholar 

Peyrusson F, Whelan AO, Hartley MG, Norville IH, Harding SV, Van Bambeke F. Intracellular activity of antibiotics against Coxiella burnetii in a model of activated human THP-1 cells. Antimicrob Agents Chemother. 2021;65(12):e0106121. https://doi.org/10.1128/AAC.01061-21.

Article 

留言 (0)

沒有登入
gif