Sirtuin 3-activated superoxide dismutase 2 mediates fluoride-induced osteoblastic differentiation in vitro and in vivo by down-regulating reactive oxygen species

Angmar-Månsson B, Whitford GM (1984) Enamel fluorosis related to plasma F levels in the rat. Caries Res 18(1):25–32. https://doi.org/10.1159/000260743

Article  PubMed  Google Scholar 

Atashi F, Modarressi A, Pepper MS (2015) The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 24(10):1150–1163. https://doi.org/10.1089/scd.2014.0484

Article  CAS  PubMed  PubMed Central  Google Scholar 

Botre C, Shahu A, Adkar N, Shouche Y, Ghaskadbi S, Ashma R (2015) Superoxide dismutase 2 polymorphisms and osteoporosis in Asian Indians: a genetic association analysis. Cell Mol Biol Lett 20(4):685–697. https://doi.org/10.1515/cmble-2015-0041

Article  CAS  PubMed  Google Scholar 

Chang G, Chen Y, Zhang H, Zhou W (2019) Trans sodium crocetinate alleviates ischemia/reperfusion-induced myocardial oxidative stress and apoptosis via the SIRT3/FOXO3a/SOD2 signaling pathway. Int Immunopharmacol 71:361–371. https://doi.org/10.1016/j.intimp.2019.03.056

Article  CAS  PubMed  Google Scholar 

Chu Y, Gao Y, Yang Y, Liu Y, Guo N, Wang L, Huang W, Wu L, Sun D, Gu W (2020) β-catenin mediates fluoride-induced aberrant osteoblasts activity and osteogenesis. Environ Pollut 265(Pt A):114734. https://doi.org/10.1016/j.envpol.2020.114734

Article  CAS  PubMed  Google Scholar 

Czekanska EM, Stoddart MJ, Richards RG, Hayes JS (2012) In search of an osteoblast cell model for in vitro research. Eur Cell Mater 24:1–17. https://doi.org/10.22203/ecm.v024a01

Article  CAS  PubMed  Google Scholar 

Czerwinski E, Nowak J, Dabrowska D, Skolarczyk A, Kita B, Ksiezyk M (1988) Bone and joint pathology in fluoride-exposed workers. Arch Environ Health 43(5):340–343. https://doi.org/10.1080/00039896.1988.9934945

Article  CAS  PubMed  Google Scholar 

Deng FY, Lei SF, Chen XD, Tan LJ, Zhu XZ, Deng HW (2011) An integrative study ascertained SOD2 as a susceptibility gene for osteoporosis in Chinese. J Bone Miner Res 26(11):2695–2701. https://doi.org/10.1002/jbmr.471

Article  CAS  PubMed  Google Scholar 

Denu RA (2017) SIRT3 enhances mesenchymal stem cell longevity and differentiation. Oxid Med Cell Longev 2017:5841716. https://doi.org/10.1155/2017/5841716

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding Y, Yang H, Wang Y, Chen J, Ji Z, Sun H (2017) Sirtuin 3 is required for osteogenic differentiation through maintenance of PGC-1ɑ-SOD2-mediated regulation of mitochondrial function. Int J Biol Sci 13(2):254–264. https://doi.org/10.7150/ijbs.17053

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du Y, Fu X, Jin J, Li Z, Xu K, Guo M, Hou X, Feng Z, Ding L, Gong Y, Liu B, Yu F, Zhou G, Ba Y (2022) Effects of SNPs in SOD2 and SOD3 interacted with fluoride exposure on the susceptibility of dental fluorosis. Int J Hyg Environ Health 239:113879. https://doi.org/10.1016/j.ijheh.2021.113879

Article  CAS  PubMed  Google Scholar 

Ekstrand J, Spak CJ, Vogel G (1990) Pharmacokinetics of fluoride in man and its clinical relevance. J Dent Res 69:550–5. https://doi.org/10.1177/00220345900690s109

Article  PubMed  Google Scholar 

Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. https://doi.org/10.1038/nature08197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao J, Feng Z, Wang X, Zeng M, Liu J, Han S, Xu J, Chen L, Cao K, Long J, Li Z, Shen W, Liu J (2018) SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ 25(2):229–240. https://doi.org/10.1038/cdd.2017.144

Article  CAS  PubMed  Google Scholar 

Guo Y, Jia X, Cui Y, Song Y, Wang S, Geng Y, Li R, Gao W, Fu D (2021) Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biol 41:101915. https://doi.org/10.1016/j.redox.2021.101915

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu S, Wang S (2022) The Role of SIRT3 in the Osteoporosis. Front Endocrinol 13:893678. https://doi.org/10.3389/fendo.2022.893678

Article  Google Scholar 

Jha SK, Mishra VK, Sharma DK, Damodaran T (2011) Fluoride in the environment and its metabolism in humans. Rev Environ Contam Toxicol 211:121–142. https://doi.org/10.1007/978-1-4419-8011-3_4

Article  CAS  PubMed  Google Scholar 

Jiang Y, Yang Y, Wang H, Darko GM, Sun D, Gao Y (2018) Identification of miR-200c-3p as a major regulator of SaoS2 cells activation induced by fluoride. Chemosphere 199:694–701. https://doi.org/10.1016/j.chemosphere.2018.01.095

Article  CAS  PubMed  Google Scholar 

Jin ZH, Wang SF, Liao W (2020) Zoledronic acid accelerates osteogenesis of bone marrow mesenchymal stem cells by attenuating oxidative stress via the SIRT3/SOD2 pathway and thus alleviates osteoporosis. Eur Rev Med Pharmacol Sci 24(4):2095–2101. https://doi.org/10.26355/eurrev_202002_20389

Article  PubMed  Google Scholar 

Kebede A, Retta N, Abuye C, Whiting SJ, Kassaw M, Zeru T, Tessema M, Kjellevold M (2016) Dietary fluoride intake and associated skeletal and dental fluorosis in school age children in rural Ethiopian rift valley. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph13080756

Article  PubMed  PubMed Central  Google Scholar 

Kim H, Lee YD, Kim HJ, Lee ZH, Kim HH (2017) SOD2 and Sirt3 control osteoclastogenesis by regulating mitochondrial ROS. J Bone Miner Res 32(2):397–406. https://doi.org/10.1002/jbmr.2974

Article  CAS  PubMed  Google Scholar 

Kobayashi K, Nojiri H, Saita Y, Morikawa D, Ozawa Y, Watanabe K, Koike M, Asou Y, Shirasawa T, Yokote K, Kaneko K, Shimizu T (2015) Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis. Sci Rep 5:9148. https://doi.org/10.1038/srep09148

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar M, Goswami R, Patel AK, Srivastava M, Das N (2020) Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: a review. Chemosphere 249:126126. https://doi.org/10.1016/j.chemosphere.2020.126126

Article  CAS  PubMed  Google Scholar 

Lee M, Arikawa K, Nagahama F (2017) Micromolar levels of sodium fluoride promote osteoblast differentiation through Runx2 signaling. Biol Trace Elem Res 178(2):283–291. https://doi.org/10.1007/s12011-017-0930-5

Article  CAS  PubMed  Google Scholar 

Li R, Gong Z, Yu Y, Niu R, Bian S, Sun Z (2022) Alleviative effects of exercise on bone remodeling in fluorosis mice. Biol Trace Elem Res 200(3):1248–1261. https://doi.org/10.1007/s12011-021-02741-y

Article  CAS  PubMed  Google Scholar 

Liu Q, Liu H, Yu X, Wang Y, Yang C, Xu H (2016) Analysis of the role of insulin signaling in bone turnover induced by fluoride. Biol Trace Elem Res 171(2):380–390. https://doi.org/10.1007/s12011-015-0555-5

Article  CAS  PubMed  Google Scholar 

Liu Y, Yang Y, Wei Y, Liu X, Li B, Chu Y, Huang W, Wang L, Lou Q, Guo N, Wu L, Wang J, Zhang M, Yin F, Fan C, Su M, Zhang Z, Zhang X, Gao Y, Sun D (2020) sKlotho is associated with the severity of brick tea-type skeletal fluorosis in China. Sci Total Environ 744:140749. https://doi.org/10.1016/j.scitotenv.2020.140749

Article  CAS  PubMed 

留言 (0)

沒有登入
gif