Enrichment of cell cycle pathways in progesterone-treated endometrial organoids of infertile women compared to fertile women

Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, De Mouzon J, Sokol R, et al. The international glossary on infertility and fertility care, 2017. Hum Reprod. 2017;32:1786–801.

Article  PubMed  PubMed Central  Google Scholar 

Diedrich K, Fauser BCJM, Devroey P, Griesinger G. The role of the endometrium and embryo in human implantation. Hum Reprod Update. 2007;13:365–77.

Article  CAS  PubMed  Google Scholar 

Critchley HOD, Maybin JA, Armstrong GM, Williams ARW. Physiology of the endometrium and regulation of menstruation. Physiol Rev. 2020;100:1149–79. Available from: https://journals.physiology.org/doi/https://doi.org/10.1152/physrev.00031.2019

Gargett CE, Nguyen HPT, Ye L. Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord. 2012;13:235–51. Available from: http://link.springer.com/https://doi.org/10.1007/s11154-012-9221-9

Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25. Available from: http://www.sciencedirect.com/science/article/pii/S0015028216300620

Shi C, Han HJ, Fan LJ, Guan J, Zheng XB, Chen X, et al. Diverse endometrial mRNA signatures during the window of implantation in patients with repeated implantation failure. Hum Fertil. 2018;21:183–94. Available from: https://doi.org/10.1080/14647273.2017.1324180

Zhou Q, Yan G, Ding L, Liu J, Yu X, Kong S, et al. EHD1 impairs decidualization by regulating the Wnt4/β-catenin signaling pathway in recurrent implantation failure. EBioMedicine . 2019;50:343–54. Available from: https://doi.org/10.1016/j.ebiom.2019.10.018

Bastu E, Demiral I, Gunel T, Ulgen E, Gumusoglu E, Hosseini MK, et al. Potential marker pathways in the endometrium that may cause recurrent implantation failure. Reprod Sci. 2019;26:879–90.

Article  CAS  PubMed  Google Scholar 

Koler M, Achache H, Tsafrir A, Smith Y, Revel A, Reich R. Disrupted gene pattern in patients with repeated in vitro fertilization (IVF) failure. Hum Reprod. 2009;24:2541–8.

Article  CAS  PubMed  Google Scholar 

Tapia-Pizarro A, Figueroa P, Brito J, Marín JC, Munroe DJ, Croxatto HB. Endometrial gene expression reveals compromised progesterone signaling in women refractory to embryo implantation. Reprod Biol Endocrinol. 2014;12:1–15.

Article  Google Scholar 

Cimadomo D, Craciunas L, Vermeulen N, Vomstein K, Toth B. Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists. Human Reproduction. 2021;36:305–17. Available from: https://academic.oup.com/humrep/article/36/2/305/6032160

Suhorutshenko M, Kukushkina V, Velthut-Meikas A, Altmäe S, Peters M, Mägi R, et al. Endometrial receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity. Hum Reprod. 2018;33:2074–86.

Article  CAS  PubMed  Google Scholar 

Catalini L, Fedder J. Characteristics of the endometrium in menstruating species: lessons learned from the animal kingdom†. Biol Reprod. 2020;102:1160–9. Available from: https://academic.oup.com/biolreprod/article/102/6/1160/5775593

Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat Cell Biol. 2017;19:568–77. Available from: http://www.nature.com/articles/ncb3516

Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development (Cambridge). 2017;144:1775–86.

Article  CAS  Google Scholar 

Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97. Available from: https://doi.org/10.1016/j.cell.2016.05.082

Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 2016;38:590–600.

Article  CAS  PubMed  Google Scholar 

Bui BN, Boretto M, Kobayashi H, van Hoesel M, Steba GS, van Hoogenhuijze N, et al. Organoids can be established reliably from cryopreserved biopsy catheter-derived endometrial tissue of infertile women. Reprod Biomed Online. 2020;00:1–9. Available from: https://doi.org/10.1016/j.rbmo.2020.03.019

Fitzgerald HC, Dhakal P, Behura SK, Schust DJ, Spencer TE. Self-renewing endometrial epithelial organoids of the human uterus. Proc Natl Acad Sci U S A. 2019;116:23132–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cochrane DR, Campbell KR, Greening K, Ho GC, Hopkins J, Bui M, et al. Single cell transcriptomes of normal endometrial derived organoids uncover novel cell type markers and cryptic differentiation of primary tumours. Journal of Pathology. 2020;252:201–14.

Article  CAS  PubMed  Google Scholar 

Hewitt SC, Wu S, Wang T, Ray M, Brolinson M, Young SL, et al. The estrogen receptor α cistrome in human endometrium and epithelial organoids. Endocrinology. 2022;163. Available from: https://academic.oup.com/endo/article/doi/https://doi.org/10.1210/endocr/bqac116/6650761

Garcia-Alonso L, Handfield L-F, Roberts K, Nikolakopoulou K, Fernando RC, Gardner L, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat Genet. 2021;53:1698–711.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Hoogenhuijze NE, Mol F, Laven JSE, Groenewoud ER, Traas MAF, Janssen CAH, et al. Endometrial scratching in women with one failed IVF/ICSI cycle-outcomes of a randomised controlled trial (SCRaTCH). Hum Reprod. 2020;

Bui BN, Torrance HL, Janssen C, Cohlen B, de Bruin JP, den Hartog JE, et al. Does endometrial scratching increase the rate of spontaneous conception in couples with unexplained infertility and a good prognosis (Hunault > 30%)? Study protocol of the SCRaTCH-OFO trial: a randomized controlled trial. BMC Pregnancy Childbirth. 2018;18:511. Available from: https://bmcpregnancychildbirth.biomedcentral.com/articles/https://doi.org/10.1186/s12884-018-2160-z

Hunault CC, Habbema JDF, Eijkemans MJC, Collins JA, Evers JLH, te Velde ER. Two new prediction rules for spontaneous pregnancy leading to live birth among subfertile couple, based on the synthesis of three previous models. Hum Reprod. 2004;19:2019–26.

Article  CAS  PubMed  Google Scholar 

American Society for Reproductive Medicine. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril. 1997;67:817–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S001502829781391X

van Hoogenhuijze NE, Torrance HL, Mol F, Laven JSE, Scheenjes E, Traas MAF, et al. Endometrial scratching in women with implantation failure after a first IVF/ICSI cycle; does it lead to a higher live birth rate? The SCRaTCH study: A randomized controlled trial (NTR 5342). BMC Womens Health. 2017;17:1–7.

Google Scholar 

Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Kreuger F. TrimGalore [Internet]. 2019. Available from: https://github.com/FelixKrueger/TrimGalore/releases

Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/https://doi.org/10.1093/bioinformatics/bts611

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/https://doi.org/10.1093/bioinformatics/bts635

Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–4. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/https://doi.org/10.1093/bioinformatics/btv098

Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28:2184–5. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/https://doi.org/10.1093/bioinformatics/bts356

Smith AD, Daley T, Deng C. PreSeq [Internet]. 2018. Available from: https://github.com/smithlabcode/preseq

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24227677

Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform [Internet]. 2020;2. Available from: https://academic.oup.com/nargab/article/doi/https://doi.org/10.1093/nargab/lqaa078/5909519

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol [Internet]. 2014;15:550. Available from: http://genomebiology.biomedcentral.com/articles/https://doi.org/10.1186/s13059-014-0550-8

Wickham H. ggplot2: elegant graphics for data analysis [Internet]. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org

Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles G v., et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14.

Kuleshov M, v., Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Enrichr: a comprehensive gene set enrichment analysis web server, et al. update. Nucleic Acids Res. 2016;2016(44):W90–7.

Article  Google Scholar 

Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

Article  CAS  PubMed  Google Scholar 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borten MA, Bajikar SS, Sasaki N, Clevers H, Janes KA. Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Sci Rep. 2018;8.

Devesa-Peiro A, Sebastian-Leon P, Garcia-Garcia F, Arnau V, Aleman A, Pellicer A, et al. Uterine disorders affecting female fertility: what are the molecular functions altered in endometrium? Fertil Steril. Elsevier Inc.; 2020. p. 1261–74.

Makker A, Goel MM, Nigam D, Mahdi AA, Das V, Agarwal A, et al. Aberrant Akt activation during implantation window in infertile women with intramural uterine fibroids. Reproductive Sciences [Internet]. 2018;25:1243–53. Available from: http://journals.sagepub.com/doi/https://doi.org/10.1177/1933719117737844

Makieva S, Giacomini E, Ottolina J, Sanchez AM, Papaleo E, Viganò P. Inside the endometrial cell signaling subway: mind the gap(s). Int J Mol Sci. MDPI AG; 2018.

Lessey BA, Kim JJ. Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show you why. Fertil Steril. 2017;108:19–27.

Article  PubMed  PubMed Central  Google Scholar 

Park JS, Lee JH, Kim M, Chang HJ, Hwang KJ, Chang KH. Endometrium from women with endometriosis shows increased proliferation activity. Fertil Steril. 2009;92:1246–9.

Article  CAS  PubMed  Google Scholar 

Lessey B, Lebovic D, Taylor R. Eutopic endometrium in women with endometriosis: ground zero for the study of implantation defects. Semin Reprod Med. 2013;31:109–24.

Article  PubMed  Google Scholar 

Koot YEM, van Hooff SR, Boomsma CM, van Leenen D, Koerkamp MJAG, Goddijn M, et al. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep [Internet]. 2016;6:1–12. Available from: https://doi.org/10.1038/srep19411

Altmäe S, Esteban FJ, Stavreus-Evers A, Simón C, Giudice L, Lessey BA, et al. Guidelines for the design, analysis and interpretation of “omics” data: focus on human endometrium. Hum Reprod Update. 2014;20:12–28.

Article  PubMed  Google Scholar 

Zhou W, Barton S, Cui J, Santos LL, Yang G, Stern C, et al. Infertile human endometrial organoid apical protein secretions are dysregulated and impair trophoblast progenitor cell adhesion. Front Endocrinol (Lausanne). 2022;13.

Lee JY, Lee M, Lee SK. Role of endometrial immune cells in implantation. Clin Exp Reprod Med. 2011;38:119.

Article  PubMed  PubMed Central  Google Scholar 

Evron A, Goldman S, Shalev E. Effect of primary human endometrial stromal cells on epithelial cell receptivity and protein expression is dependent on menstrual cycle stage. Hum Reprod. 2011;26:176–90.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif