van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397:410–27.
Hanamura I. Multiple myeloma with high-risk cytogenetics and its treatment approach. Int J Hematol. 2022;115:762–77.
Article CAS PubMed PubMed Central Google Scholar
Wolffe AP. Histone deacetylase: a regulator of transcription. Science. 1996;272:371–2.
Article CAS PubMed Google Scholar
Smith EM, Boyd K, Davies FE. The potential role of epigenetic therapy in multiple myeloma. Br J Haematol. 2010;148:702–13.
Article CAS PubMed Google Scholar
Berdeja JG, Laubach JP, Richter J, et al. Panobinostat from bench to bedside: rethinking the treatment paradigm for multiple myeloma. Clin Lymphoma Myeloma Leuk. 2021;21:752–65.
Article CAS PubMed Google Scholar
Harada T, Hideshima T, Anderson KC. Histone deacetylase inhibitors in multiple myeloma: from bench to bedside. Int J Hematol. 2016;104:300–9.
Article CAS PubMed Google Scholar
Ohguchi H, Hideshima T, Anderson KC. The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer J. 2018;8:83.
Article PubMed PubMed Central Google Scholar
Imai Y, Hirano M, Kobayashi M, Futami M, Tojo A. HDAC inhibitors exert anti-myeloma effects through multiple modes of action. Cancers (Basel). 2019;11:475.
Article CAS PubMed Google Scholar
San-Miguel JF, Richardson PG, Günther A, et al. Phase Ib study of panobinostat and bortezomib in relapsed or relapsed and refractory multiple myeloma. J Clin Oncol. 2013;31:3696–703.
Article CAS PubMed Google Scholar
Richardson PG, Schlossman RL, Alsina M, et al. PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib-refractory myeloma. Blood. 2013;122:2331–7.
Article CAS PubMed Google Scholar
San-Miguel JF, Hungria VT, Yoon SS, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol. 2014;15:1195–206.
Article CAS PubMed Google Scholar
Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9.
Article CAS PubMed PubMed Central Google Scholar
Whittaker SJ, Demierre MF, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–91.
Article CAS PubMed Google Scholar
Utsunomiya A, Izutsu K, Jo T, Yoshida S, et al. Oral histone deacetylase inhibitor tucidinostat (HBI-8000) in patients with relapsed or refractory adult T-cell leukemia/lymphoma: phase IIb results. Cancer Sci. 2022;113:2778–87.
Article CAS PubMed PubMed Central Google Scholar
Rai S, Kim WS, Ando K, et al. Oral HDAC inhibitor tucidinostat in patients with relapsed or refractory peripheral T-cell lymphoma: phase IIb results. Haematologica. 2023;108:811–21.
Article CAS PubMed Google Scholar
Abe F, Kitadate A, Ikeda S, et al. Histone deacetylase inhibitors inhibit metastasis by restoring a tumor suppressive microRNA-150 in advanced cutaneous T-cell lymphoma. Oncotarget. 2017;8:7572–85.
Bartel DP. Metazoan MicroRNAs. Cell. 2018;173:20–51.
Article CAS PubMed PubMed Central Google Scholar
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22.
Article CAS PubMed Google Scholar
Amodio N, Stamato MA, Gullà AM, et al. Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol Cancer Ther. 2016;15:1364–75.
Article CAS PubMed Google Scholar
Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105:12885–90.
Article CAS PubMed PubMed Central Google Scholar
Chi J, Ballabio E, Chen XH, et al. MicroRNA expression in multiple myeloma is associated with genetic subtype, isotype and survival. Biol Direct. 2011;6:23.
Article CAS PubMed PubMed Central Google Scholar
Chang TC, Yu D, Lee YS, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40:43–50.
Article CAS PubMed Google Scholar
Chou YT, Lin HH, Lien YC, et al. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res. 2010;70:8822–31.
Article CAS PubMed Google Scholar
Yu Z, Wei X, Liu L, et al. Indirubin-3’-monoxime acts as proteasome inhibitor: therapeutic application in multiple myeloma. EBioMedicine. 2022;78: 103950.
Article CAS PubMed PubMed Central Google Scholar
Sanchez N, Gallagher M, Lao N, et al. MiR-7 triggers cell cycle arrest at the G1/S transition by targeting multiple genes including Skp2 and Psme3. PLoS One. 2013;8: e65671.
Article CAS PubMed PubMed Central Google Scholar
Xiong S, Zheng Y, Jiang P, et al. PA28gamma emerges as a novel functional target of tumour suppressor microRNA-7 in non-small-cell lung cancer. Br J Cancer. 2014;110:353–62.
Article CAS PubMed Google Scholar
Tang S, Ma D, Cheng B, et al. Crucial role of HO-1/IRF4-dependent apoptosis induced by panobinostat and lenalidomide in multiple myeloma. Exp Cell Res. 2018;363:196–207.
Article CAS PubMed Google Scholar
Abe K, Ikeda S, Nara M, et al. Hypoxia-induced oxidative stress promotes therapy resistance via upregulation of heme oxygenase-1 in multiple myeloma. Cancer Med. 2023;12:9709–22.
Article CAS PubMed PubMed Central Google Scholar
Handa H, Murakami Y, Ishihara R, Kimura-Masuda K, Masuda Y. The role and function of microRNA in the pathogenesis of multiple myeloma. Cancers (Basel). 2019;11:1738.
Article CAS PubMed Google Scholar
Zhao J, Tao Y, Zhou Y, et al. MicroRNA-7: a promising new target in cancer therapy. Cancer Cell Int. 2015;15:103.
留言 (0)