Cellular and pathological functions of tau

Cleveland, D. W., Hwo, S. Y. & Kirschner, M. W. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol. 116, 207–225 (1977).

Article  CAS  PubMed  Google Scholar 

Aronov, S., Aranda, G., Behar, L. & Ginzburg, I. Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J. Neurosci. 21, 6577–6587 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thies, E. & Mandelkow, E.-M. Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J. Neurosci. 27, 2896–2907 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forrest, S. L. et al. Cell-specific MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy. Acta Neuropathol. 146, 395–414 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brion, J. P., Nunez, H., Flament-Durand, J. & Mise, J. en evidence immunologique de la proteine tau au niveau des lesions de degenerescence neurofibril-laire de la maladie d’Alzheimer. Arch. Biol. 95, 229–235 (1985).

Google Scholar 

Götz, J., Halliday, G. & Nisbet, R. M. Molecular pathogenesis of the tauopathies. Annu. Rev. Pathol. 14, 239–261 (2019).

Article  PubMed  Google Scholar 

McKee, A. C. et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J. Neuropathol. Exp. Neurol. 68, 709–735 (2009).

Article  PubMed  Google Scholar 

Morris, H. R. et al. Tau exon 10 + 16 mutation FTDP-17 presenting clinically as sporadic young onset PSP. Neurology 61, 102–104 (2003).

Article  CAS  PubMed  Google Scholar 

Mori, H., Nishimura, M., Namba, Y. & Oda, M. Corticobasal degeneration: a disease with widespread appearance of abnormal tau and neurofibrillary tangles, and its relation to progressive supranuclear palsy. Acta Neuropathol. 88, 113–121 (1994).

Article  CAS  PubMed  Google Scholar 

Goedert, M. & Spillantini, M. G. Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer’s disease. Biochim. Biophys. Acta 1502, 110–121 (2000).

Article  CAS  PubMed  Google Scholar 

Spillantini, M. G. et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci. USA 95, 7737–7741 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frost, B., Jacks, R. L. & Diamond, M. I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284, 12845–12852 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frost, B., Ollesch, J., Wille, H. & Diamond, M. I. Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J. Biol. Chem. 284, 3546–3551 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, J. L. & Lee, V. M. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317–15331 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kepp, K. P., Robakis, N. K., Hoilund-Carlsen, P. F., Sensi, S. L. & Vissel, B. The amyloid cascade hypothesis: an updated critical review. Brain 146, 3969–3990 (2023).

Article  PubMed  Google Scholar 

Bejanin, A. et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140, 3286–3300 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Boccalini, C. et al. The impact of tau deposition and hypometabolism on cognitive impairment and longitudinal cognitive decline. Alzheimers Dement. 20, 221–233 (2024).

Article  CAS  PubMed  Google Scholar 

Kent, S. A., Spires-Jones, T. L. & Durrant, C. S. The physiological roles of tau and Abeta: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 140, 417–447 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moussaud, S. et al. Alpha-synuclein and tau: teammates in neurodegeneration. Mol. Neurodegener. 9, 43 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Tracy, T. E. & Gan, L. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. Curr. Opin. Neurobiol. 51, 134–138 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Y., Liu, B., Sinha, S. C., Amin, S. & Gan, L. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol. Neurodegener. 18, 79 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fellous, A., Francon, J., Lennon, A. M. & Nunez, J. Microtubule assembly in vitro. Eur. J. Biochem. 78, 167–174 (1977).

Article  CAS  PubMed  Google Scholar 

Mukrasch, M. D. et al. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 7, e1000034 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Brandt, R. & Lee, G. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro. J. Biol. Chem. 268, 3414–3419 (1993).

Article  CAS  PubMed  Google Scholar 

Schweers, O., Schönbrunn-Hanebeck, E., Marx, A. & Mandelkow, E. Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J. Biol. Chem. 269, 24290–24297 (1994).

Article  CAS  PubMed  Google Scholar 

Goode, B. L. et al. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol. Biol. Cell 8, 353–365 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rani, L., Mittal, J. & Mallajosyula, S. S. Effect of phosphorylation and O-GlcNAcylation on proline-rich domains of tau. J. Phys. Chem. B 124, 1909–1918 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau, D. H. et al. Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer’s disease. Acta Neuropathol. Commun. 4, 49 (2016).

Article 

留言 (0)

沒有登入
gif