Isolation and characterization of a two-coordinate phosphinidene oxide

Gowenlock, B. G. & Richter-Addo, G. B. Preparations of C-nitroso compounds. Chem. Rev. 104, 3315–3340 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bianchi, P. & Monbaliu, J. C. M. Three decades of unveiling the complex chemistry of C-nitroso species with computational chemistry. Org. Chem. Front. 9, 223–226 (2022).

Article  CAS  Google Scholar 

Chu, X. X. et al. Q methoxyphosphinidene and isomeric methylphosphinidene oxide. J. Am. Chem. Soc. 140, 13604–13608 (2018).

Article  CAS  PubMed  Google Scholar 

Zhao, X. F. et al. Phosphorus analogues of methyl nitrite and nitromethane: CH3OPO and CH3PO2. Angew. Chem. Int. Ed. 58, 12164–12169 (2019).

Article  CAS  Google Scholar 

Mardyukov, A., Keul, F. & Schreiner, P. R. Isolation and characterization of the free phenylphosphinidene chalcogenides C6H5P=O and C6H5P=S, the phosphorous analogues of nitrosobenzene and thionitrosobenzene. Angew. Chem. Int. Ed. 59, 12445–12449 (2020).

Article  CAS  Google Scholar 

Chu, X. et al. The triplet hydroxyl radical complex of phosphorus monoxide. Angew. Chem. Int. Ed. 59, 21949–21953 (2020).

Article  CAS  Google Scholar 

Fast, D. E. et al. Bis(mesitoyl)phosphinic acid: photo-triggered release of metaphosphorous acid in solution. Chem. Commun. 52, 9917–9920 (2016).

Article  CAS  Google Scholar 

Liang, S. et al. Elucidating the thermal decomposition of dimethyl methylphosphonate by vacuum ultraviolet (VUV) photoionization: pathways to the PO radical, a key species in flame-retardant mechanisms. Chem. Eur. J. 21, 1073–1080 (2015).

Article  CAS  PubMed  Google Scholar 

Qian, W. Y. et al. Hydrogen-atom tunneling in metaphosphorous acid. Chem. Eur. J. 26, 8205–8209 (2020).

Article  CAS  PubMed  Google Scholar 

Johnson, M. J. A., Odom, A. L. & Cummins, C. C. Phosphorus monoxide as a terminal ligand. Chem. Commun. 1523, 1524 (1997).

Google Scholar 

Stille, J. K., Eichelberger, J. L., Higgins, J. & Freeburger, M. E. Phenylphosphinidene oxide. Thermal decomposition of 2,3-benzo-l,4,5,6,7-pentaphenyl-7-phosphabicyclo-[2.2.1]hept-5-ene oxide. J. Am. Chem. Soc. 94, 4761–4763 (1972).

Article  CAS  Google Scholar 

Yoshifuji, M., Nakayama, S., Okazaki, R. & Inamoto, N. Phosphinidenes and related intermediates. Part 1. Reactions of phosphinoylidenes (R-P=O) and phosphinothioylidenes (R-P=S) with diethyl disulphide and benzl. J. Chem. Soc.Perkin Trans. 1973, 2065–2068 (1973).

Article  Google Scholar 

Shigenobu, N., Masaaki, Y., Renji, O. & Naoki, I. Phosphinidenes and related intermediates. III. Reactions of phosphinylidenes and phosphinothioylidenes with conjugated dienes. Bull. Chem. Soc. Jpn 48, 546–548 (1975).

Article  Google Scholar 

Niecke, E., Zorn, H., Krebs, B. & Henkel, G. (R2NPO)3: a novel heterocycle with λ3-phosphorus by trimerization of an aminooxophosphane. Angew. Chem. Int. Ed. Engl. 19, 709–710 (1980).

Article  Google Scholar 

Cowley, A. H., Gabbaï, F. P., Corbelin, S. & Decken, A. Synthesis and thermolysis of a phosphorus(III) oxalate. Evidence for the generation of an arylphosphinidene oxide. Inorg. Chem. 34, 5931–5932 (1995).

Article  CAS  Google Scholar 

Gaspar, P. P. et al. 2,6-Dimethoxyphenylphosphirane oxide and sulfide and their thermolysis to phosphinidene chalcogenides—kinetic and mechanistic studies. Tetrahedron 56, 105–119 (2000).

Article  CAS  Google Scholar 

Quin, L. D., Jankowski, S., Sommese, A. G., Lahti, P. M. & Chesnut, D. B. The first direct observation of a phosphenite. J. Am. Chem. Soc. 114, 11009–11010 (1992).

Article  CAS  Google Scholar 

Niecke, E., Engelmann, M., Zorn, H., Krebs, B. & Henkel, G. Complex-stabilization of an aminooxophosphane (phosphinidene oxide). Angew. Chem. Int. Ed. Engl. 19, 710–712 (1980).

Article  Google Scholar 

Alonso, M., García, M. E., Ruiz, M. A., Hamidov, H. & Jeffery, J. C. Chemistry of the phosphinidene oxide ligand. J. Am. Chem. Soc. 126, 13610–13611 (2004).

Article  CAS  PubMed  Google Scholar 

Alonso, M. et al. Oxidation reactions of the phosphinidene oxide ligand. J. Am. Chem. Soc. 127, 15012–15013 (2005).

Article  CAS  PubMed  Google Scholar 

Alonso, M., Alvarez, M. A., García, M. E., García-Vivó, D. & Ruiz, M. A. Chemistry of the oxophosphinidene ligand. 1. Electronic structure of the anionic complexes [MCp(CO)2]− (M = Mo, W; R* = 2,4,6-C6H2tBu3) and their reactions with H+ and C-based electrophiles. Inorg. Chem. 49, 8962–8976 (2010).

Article  CAS  PubMed  Google Scholar 

Alonso, M. et al. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp(CO)2]− (M = Mo, W; R* = 2,4,6-C6H2tBu3) toward electrophiles based on elements different from carbon. Inorg. Chem. 49, 11595–11605 (2010).

Article  CAS  PubMed  Google Scholar 

Liu, L. L. & Stephan, D. W. An imine–gallium Lewis pair stabilized oxophosphinidene via an unexpected phosphirene rearrangement. Chem. Commun. 54, 1041–1044 (2018).

Article  CAS  Google Scholar 

Dhara, D. et al. Synthesis and reactivity of NHC-coordinated phosphinidene oxide. Chem. Commun. 57, 9546–9549 (2021).

Article  CAS  Google Scholar 

Baradzenka, A. G., Vyboishchikov, S. F., Pilkington, M. & Nikonov, G. I. Base-stabilized phosphinidene oxide, imide and sulfide. Chem. Eur. J. 29, e202301842 (2023).

Article  CAS  PubMed  Google Scholar 

Goto, K., Yamamoto, G., Tan, B. & Okazaki, R. A novel dendrimer-type m-terphenyl substituent for the kinetic stabilization of highly reactive species. Tetrahedron Lett. 42, 4875–4877 (2001).

Article  CAS  Google Scholar 

Shimada, K. et al. Isolation of a Se-nitrososelenol: a new class of reactive nitrogen species relevant to protein Se-nitrosation. J. Am. Chem. Soc. 126, 13238–13239 (2004).

Article  CAS  PubMed  Google Scholar 

Masuda, R., Kimura, R., Karasaki, T., Sase, S. & Goto, K. Modeling the catalytic cycle of glutathione peroxidase by nuclear magnetic resonance spectroscopic analysis of selenocysteine selenenic acids. J. Am. Chem. Soc. 143, 6345–6350 (2021).

Article  CAS  PubMed  Google Scholar 

Masuda, R., Kuwano, S. & Goto, K. Modeling selenoprotein Se-nitrosation: synthesis of a Se-nitrososelenocysteine with persistent stability. J. Am. Chem. Soc. 145, 14184–14189 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goicoechea, J. M. & Grützmacher, H. The chemistry of the 2-phosphaethynolate anion. Angew. Chem. Int. Ed. 57, 16968–16994 (2018).

Article  CAS  Google Scholar 

Hinz, A. & Goicoechea, J. M. The 2-arsaethynolate anion: synthesis and reactivity towards heteroallenes. Angew. Chem. Int. Ed. 55, 8536–8541 (2016).

Article  CAS  Google Scholar 

Tambornino, F., Hinz, A., Köppe, R. & Goicoechea, J. M. A general synthesis of phosphorus- and arsenic-containing analogues of the thio- and seleno-cyanate anions. Angew. Chem. Int. Ed. 57, 8230–8234 (2018).

Article  CAS  Google Scholar 

Ergöçmen, D. & Goicoechea, J. M. Synthesis, structure and reactivity of a cyapho-cyanamide salt. Angew. Chem. Int. Ed. 60, 25286–25289 (2021).

Article  Google Scholar 

Hu, C. & Goicoechea, J. M. Synthesis, structure and reactivity of a cyapho(dicyano)methanide salt. Angew. Chem. Int. Ed. 61, e202208921 (2022).

Article  CAS  Google Scholar 

Hinz, A., Labbow, R., Rennick, C., Schulz, A. & Goicoechea, J. M. HPCO—a phosphorus-containing analogue of isocyanic acid. Angew. Chem. Int. Ed. 56, 3911–3915 (2017).

Article  CAS  Google Scholar 

Niecke, E., Nieger, M. & Reichert, F. Arylmino(halogeno)phosphanes XP=NC6H2tBu3 (X = Cl, Br, I) and the iminophosphenium tetrachloroaluminate [P≡NC6H2tBu3]⊕[AlCl4]⊖: the first stable compound with a PN triple bond. Ange

留言 (0)

沒有登入
gif