Fan J, Tang Y, Yang W, Yu Y. Disposable multiplexed electrochemical sensors based on electro-triggered selective immobilization of probes for simultaneous detection of DNA and proteins. J Mater Chem B. 2020;8:7501–10.
Article CAS PubMed Google Scholar
Kucherenko DY, Kucherenko IS, Soldatkin OO, Topolnikova YV, Dzyadevych SV, Soldatkin AP. A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate. Bioelectrochemistry. 2019;128:100–8.
Article CAS PubMed Google Scholar
Yan J, Pedrosa VA, Simonian AL, Revzin A. Immobilizing enzymes onto electrode arrays by hydrogel photolithography to fabricate. ACS Appl Mater Interfaces. 2010;2:748–55.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Li X, Chen J, Yuan C. Micro/nano electrode array sensors: advances in fabrication and emerging applications in bioanalysis. Front Chem. 2020;8:1–9.
Article CAS PubMed PubMed Central Google Scholar
Kaur B, Pandiyan T, Satpati B, Srivastava R. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surf B Biointerfaces. 2013;111:97–106.
Article CAS PubMed Google Scholar
Liu X, Liu J. Biosensors and sensors for dopamine detection. View. 2021;2:1–16.
Lima D, Andrade Pessôa C, Wohnrath K, Humberto Marcolino-Junior L, Fernando Bergamini M. A feasible and efficient voltammetric sensor based on electropolymerized l-arginine for the detection of l-tryptophan in dietary supplements. Microchem J. 2022;181:1–9.
Zhao D, Lu Y, Ding Y, Fu R. An amperometric l-tryptophan sensor platform based on electrospun tricobalt tetroxide nanoparticles decorated carbon nanofibers. Sensors Actuators, B Chem. 2017;241:601–6.
Porto LS, da Silva DN, Silva MC, Pereira AC. Electrochemical sensor based on multi-walled carbon nanotubes and cobalt phthalocyanine composite for pyridoxine determination. Electroanalysis. 2019;31:820–8.
Rejithamol R, Beena S. Electrochemical quantification of pyridoxine (VB6) in human blood from other water-soluble vitamins. Chem Pap. 2020;74:2011–20.
Singh AK, Jaiswal N, Gautam RK, Tiwari I. Development of g-C3N4/Cu-DTO MOF nanocomposite based electrochemical sensor towards sensitive determination of an endocrine disruptor BPSIP. J Electroanal Chem. 2021;887: 115170.
Singh AK, Gautam RK, Agrahari S, Tiwari I. Oxidized g-C3N4 decorated with Cu–Al layered double hydroxide as a sustainable electrochemical sensing material for quantification of diclofenac. Mater Chem Phys. 2022;294: 127002.
Tığ GA. Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and l-tryptophan based on Ag nanoparticles and poly(l-arginine)-graphene oxide composite. J Electroanal Chem. 2017;807:19–28.
Wang Z, An R, Dai Y, Luo H. A Simple strategy for the simultaneous determination of dopamine, uric acid, l-tryptophan and theophylline based on a carbon dots modified electrode. Int J Electrochem Sci. 2021;16:1–15.
Yao W, Guo H, Liu H, Li Q, Wu N, Li L, Wang M, Fan T, Yang W. Highly electrochemical performance of Ni-ZIF-8/ N S-CNTs/CS composite for simultaneous determination of dopamine, uric acid and l-tryptophan. Microchem J. 2020. https://doi.org/10.1016/j.microc.2019.104357.
Arroquia A, Acosta I, Armada MPG. Self-assembled gold decorated polydopamine nanospheres as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. Mater Sci Eng C. 2020;109: 110602.
Grdeń M, Łukaszewski M, Jerkiewicz G, Czerwiński A. Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta. 2008;53:7583–98.
Agrahari S, Singh AK, Gautam RK, Tiwari I. Fabrication of gadolinium decorated spherical zinc oxide attached on carbon nanotubes (Gd@ZnO-MWCNTs) for electrochemical detection of a bisphenol derivative BPSIP in real sample matrices. J Appl Electrochem. 2022;1:3.
Agrahari S, Singh AK, Gautam RK, Tiwari I. Voltammetric analysis of epinephrine using glassy carbon electrode modified with nanocomposite prepared from Co-Nd bimetallic nanoparticles, alumina nanoparticles and functionalized multiwalled carbon nanotubes. Environ Sci Pollut Res. 2022. https://doi.org/10.1007/s11356-022-23660-y.
Pang X, Bian H, Su M, Ren Y, Qi J, Ma H, Wu D, Hu L, Du B, Wei Q. Photoelectrochemical cytosensing of RAW264.7 macrophage cells based on a TiO2 Nanoneedls@MoO3 array. Anal Chem. 2017;89:7950–7.
Article CAS PubMed Google Scholar
Laurinavičius L, Radzevič A, Ignatjev I, Niaura G, Vitkutė K, Širšinaitis T, Trusovas R, Pauliukaite R. Investigation of electrochemical polymerisation of l-lysine and application for immobilisation of functionalised graphene as platform for electrochemical sensing. Electrochim Acta. 2019;299:936–45.
Li Y, Ma Y, Lichtfouse E, Song J, Gong R, Zhang J, Wang S, Xiao L. In situ electrochemical synthesis of graphene-poly(arginine) composite for p-nitrophenol monitoring. J Hazard Mater. 2022. https://doi.org/10.1016/j.jhazmat.2021.126718.
Article PubMed PubMed Central Google Scholar
Clark J, Chen Y, Hinder S, Silva SRP. Highly sensitive dopamine detection using a bespoke functionalised carbon nanotube microelectrode array. Electroanalysis. 2017;29:2365–76.
Singh AK, Jaiswal N, Tiwari I, Ahmad M, Silva SRP. Electrochemical biosensors based on in situ grown carbon nanotubes on gold microelectrode array fabricated on glass substrate for glucose determination. Microchim Acta. 2023. https://doi.org/10.1007/s00604-022-05626-6.
Ahmad M, Anguita JV, Stolojan V, Corless T, Chen JS, Carey JD, Silva SRP. High quality carbon nanotubes on conductive substrates grown at low temperatures. Adv Funct Mater. 2015;25:4419–29.
Ahmad M, Silva SRP. Low temperature growth of carbon nanotubes—a review. Carbon N Y. 2020;158:24–44.
Yu H, Zhang B, Bulin C, Li R, Xing R. High-efficient synthesis of graphene oxide based on improved hummers method. Sci Rep. 2016;6:1–7.
Mirzaee M, Dehghanian C, Sabet Bokati K. One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor. J Electroanal Chem. 2018;813:152–62.
Wang Q, Zhang J, Xu Y, Wang Y, Wu L, Weng X, You C, Feng J. A one-step electrochemically reduced graphene oxide based sensor for sensitive voltammetric determination of furfural in milk products. Anal Methods. 2021;13:56–63.
Article CAS PubMed Google Scholar
Clark J, Chen Y, Ravi S, Silva P. Low impedance functionalised carbon nanotube electrode arrays for electrochemical detection. Electroanalysis. 2016;28:58–62.
Wang Z, Wang P, Tu X, Wu Y, Zhan G, Li C. A novel electrochemical sensor for estradiol based on nanoporous polymeric film bearing poly moiety. Sens Actuators B Chem. 2014;193:190–7.
Yadav M, Singh P, Ganesan V, Gupta R, Sonkar PK, Yadav DK. In situ electrochemical synthesis of a composite film containing nickel hexacyanoferrate and bentonite clay for the sensitive determination of acetaminophen and dopamine. Electroanalysis. 2019;31:1–11.
Nantaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y. Bimetallic Pt–Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens Bioelectron. 2017;98:76–82.1`
留言 (0)