Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3(2):81–100.
Hori N, Att W, Ueno T, Sato N, Yamada M, Saruwatari L, et al. Age-dependent degradation of the protein adsorption capacity of titanium. J Dent Res. 2009;88(7):663–7.
Article CAS PubMed Google Scholar
Hori N, Ueno T, Minamikawa H, Iwasa F, Yoshino F, Kimoto K, et al. Electrostatic control of protein adsorption on UV-photofunctionalized titanium. Acta Biomater. 2010;6(10):4175–80.
Article CAS PubMed Google Scholar
Kitajima H, Hirota M, Iwai T, Mitsudo K, Saruta J, Ogawa T. Synergistic enhancement of protein recruitment and retention via implant surface microtopography and superhydrophilicity in a computational fluid dynamics model. Int J Mol Sci. 2023;24:15618.
Article CAS PubMed PubMed Central Google Scholar
Kitajima H, Hirota M, Osawa K, Iwai T, Mitsudo K, Saruta J et al. The effects of a biomimetic hybrid meso- and nano-scale surface topography on blood and protein recruitment in a computational fluid dynamics implant model. Biomimetics (Basel). 2023;8(4).
Kitajima H, Hirota M, Osawa K, Iwai T, Saruta J, Mitsudo K et al. Optimization of blood and protein flow around superhydrophilic implant surfaces by promoting contact hemodynamics. J Prosthodont Res. 2022.
Sugita Y, Saruta J, Taniyama T, Kitajima H, Hirota M, Ikeda T et al. UV-pre-treated and protein-adsorbed titanium implants exhibit enhanced osteoconductivity. Int J Mol Sci. 2020;21(12).
Davies JE. In vitro modeling of the bone/implant interface. Anat Rec. 1996;245(2):426–45.
Article CAS PubMed Google Scholar
Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998;11(5):391–401.
Kubo K, Att W, Yamada M, Ohmi K, Tsukimura N, Suzuki T, et al. Microtopography of titanium suppresses osteoblastic differentiation but enhances chondroblastic differentiation of rat femoral periosteum-derived cells. J Biomed Mater Res A. 2008;87(2):380–91.
Kojima N, Ozawa S, Miyata Y, Hasegawa H, Tanaka Y, Ogawa T. High-throughput gene expression analysis in bone healing around titanium implants by DNA microarray. Clin Oral Implants Res. 2008;19(2):173–81.
Ogawa T, Nishimura I. Genes differentially expressed in titanium implant healing. J Dent Res. 2006;85(6):566–70.
Article CAS PubMed Google Scholar
Komatsu K, Matsuura T, Suzumura T, Ogawa T. Genome-wide transcriptional responses of osteoblasts to different titanium surface topographies. Mater Today Bio. 2023;23:100852.
Article CAS PubMed PubMed Central Google Scholar
Cooper LF. Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. J Prosthet Dent. 1998;80(4):439–49.
Article CAS PubMed Google Scholar
Masuda T, Yliheikkila PK, Felton DA, Cooper LF. Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. Int J Oral Maxillofac Implants. 1998;13(1):17–29.
Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res A. 2004;69(3):462–8.
Saruwatari L, Aita H, Butz F, Nakamura HK, Ouyang J, Yang Y, et al. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure. J Bone Min Res. 2005;20(11):2002–16.
Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent. 2000;84(5):522–34.
Article CAS PubMed Google Scholar
Albrektsson T, Wennerberg A. Oral implant surfaces: part 2–review focusing on clinical knowledge of different surfaces. Int J Prosthodont. 2004;17(5):544–64.
Jokstad A, Sanz M, Ogawa T, Bassi F, Levin L, Wennerberg A, et al. A systematic review of the role of implant design in the rehabilitation of the Edentulous Maxilla. Int J Oral Maxillofac Implants. 2016;31:s43–99.
Tsukimura N, Ueno T, Iwasa F, Minamikawa H, Sugita Y, Ishizaki K, et al. Bone integration capability of alkali- and heat-treated nanobimorphic Ti-15Mo-5Zr-3Al. Acta Biomater. 2011;7(12):4267–77.
Article CAS PubMed Google Scholar
Ueno T, Tsukimura N, Yamada M, Ogawa T. Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Biomaterials. 2011;32(30):7297–308.
Article CAS PubMed Google Scholar
Uno M, Hayashi M, Ozawa R, Saruta J, Ishigami H, Ogawa T. Mechanical interlocking capacity of Titanium with respect to surface morphology and topographical parameters. J Dentistry Oral Biology. 2020;5(2):1163.
Uno M, Ozawa R, Hamajima K, Saruta J, Ishigami H, Ogawa T. Variation in osteoblast retention ability of titanium surfaces with different topographies. J Dentistry Oral Biol. 2020;5(3):1169.
Yamada M, Ueno T, Tsukimura N, Ikeda T, Nakagawa K, Hori N, et al. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants. Int J Nanomed. 2012;7:859–73.
Yamada M, Ueno T, Minamikawa H, Ikeda T, Nakagawa K, Ogawa T. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation. Clin Oral Implants Res. 2013;24(9):991–1001.
Cassinelli C, Morra M, Bruzzone G, Carpi A, Di Santi G, Giardino R, et al. Surface chemistry effects of topographic modification of titanium dental implant surfaces: 2. In vitro experiments. Int J Oral Maxillofac Implants. 2003;18(1):46–52.
Tsukimura N, Kojima N, Kubo K, Att W, Takeuchi K, Kameyama Y, et al. The effect of superficial chemistry of titanium on osteoblastic function. J Biomed Mater Res A. 2008;84(1):108–16.
Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010;25(1):63–74.
Att W, Ogawa T. Biological aging of implant surfaces and their restoration with ultraviolet light treatment: a novel understanding of osseointegration. Int J Oral Maxillofac Implants. 2012;27(4):753–61.
Chang LC. Clinical applications of photofunctionalization on Dental Implant surfaces: a narrative review. J Clin Med. 2022;11(19).
Lee JH, Ogawa T. The biological aging of titanium implants. Implant Dent. 2012;21(5):415–21.
Ogawa T. UV-photofunctionalization of titanium implants. Oral Craniofac Tissue Eng. 2012;2:151–8.
Almas K, Smith S, Kutkut A. What is the best micro and macro dental implant topography? Dent Clin North Am. 2019;63(3):447–60.
Damiati L, Eales MG, Nobbs AH, Su B, Tsimbouri PM, Salmeron-Sanchez M, et al. Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. J Tissue Eng. 2018;9:2041731418790694.
Article PubMed PubMed Central Google Scholar
Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010;28(4):198–206.
Article CAS PubMed Google Scholar
Jager M, Zilkens C, Zanger K, Krauspe R. Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants. J Biomed Biotechnol. 2007;2007(8):69036.
CAS PubMed PubMed Central Google Scholar
Mendonca G, Mendonca DB, Aragao FJ, Cooper LF. Advancing dental implant surface technology–from micron- to nanotopography. Biomaterials. 2008;29(28):3822–35.
Article CAS PubMed Google Scholar
Rompen E, Domken O, Degidi M, Pontes AE, Piattelli A. The effect of material characteristics, of
留言 (0)