Light reception of Phycomyces revisited: several white collar proteins confer blue- and red-light sensitivity and control dynamic range and adaptation

Idnurm, A., Rodríguez-Romero, J., Corrochano, L. M., Sanz, C., Iturriaga, E. A., Eslava, A. P., & Heitman, J. (2006). The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proceedings of the National Academy of Science USA, 103, 4546–4551.

Article  CAS  Google Scholar 

He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K. H., & Liu, Y. (2002). White collar-1, a DNA binding transcription factor and a light sensor. Science, 297, 840–843. https://doi.org/10.1126/science.107279522

Article  CAS  PubMed  Google Scholar 

Froehlich, A. C., Liu, Y., Loros, Y. L., & Dunlap, J. C. (2002). White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science, 297, 815–819. https://doi.org/10.1126/science.1073681

Article  CAS  PubMed  Google Scholar 

Sanz, C., Rodríguez-Romero, J., Idnurm, A., Christie, J. M., Heitman, J., Corrochano, L. M., & Eslava, A. P. (2009). Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism. Proceedings of the National Academy of Science USA, 106, 7095–7100. https://doi.org/10.1073/pnas.0900879106

Article  Google Scholar 

Reinhardt, M., Wenzler, D., & Fukshansky, L. (1997). Orientation of the Phycomyces blue light receptor—testing the single dipole hypothesis. Journal of Photochemistry & Photobiology B:Biology, 41, 152–164. https://doi.org/10.1016/S1011-1344(97)00100-0

Article  CAS  Google Scholar 

Meistrich, M. L., Fork, R. L., & Matricon, J. (1970). Phototropism in Phycomyces as investigated by focused laser radiation. Science, 169, 370–371. https://doi.org/10.1126/science.169.3943.370

Article  CAS  PubMed  Google Scholar 

Castle, E. S. (1934). The phototropic effect of polarized light. Journal of General Physiology, 17, 41. https://doi.org/10.1085/jgp.17.6.751

Article  Google Scholar 

Jesaitis, A. J. (1974). Linear dichroism and orientation of the Phycomyces photopigment. Journal of General Physiology, 63, 1–21. https://doi.org/10.1085/jgp.63.1.1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shropshire, W., Jr. (1959). Growth responses of Phycomyces to polarized light stimuli. Science, 130, 336. https://doi.org/10.1126/science.130.3371.336

Article  PubMed  Google Scholar 

Galland, P. (1983). Action spectra of photogeotropic equilibrium in Phycomyces wild type and three behavioral mutants. Photochemistry & Photobiology, 37, 221–228. https://doi.org/10.1111/j.1751-1097.1983.tb04462.x

Article  Google Scholar 

Polaino, S., Villalobos-Escobedo, J. M., Shakya, V. P. S., Miralles-Durán, A., Chaudhary, S., Sanz, C., Shahriari, M., Luque, E. M., Eslava, A. P., Corrochano, L. M., Herrera-Estrella, A., & Idnurm, A. (2017). A Ras GTPase associated protein is involved in the phototropic and circadian photobiology responses in fungi. Scientific Reports, 7, 44790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Galland, P., & Lipson, E. D. (1985). Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH. Photochemistry & Photobiology, 41, 331–335. https://doi.org/10.1111/j.1751-1097.1985.tb03493.x

Article  CAS  Google Scholar 

Galland, P., Amon, S., Senger, H., & Russo, V. E. A. (1995). Blue-light reception in Phycomyces: Red-light sensitization in madC mutants. Botanica Acta, 108, 344–350. https://doi.org/10.1111/j.1438-8677.1995.tb00504.x

Article  CAS  Google Scholar 

Tagua, V. G., Pausch, M., Eckel, M., Gutiérrez, G., Miralles-Durán, A., Sanz, C., Eslava, A. P., Pokorny, R., Corrochano, L. M., & Batschauer, A. (2015). Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proceedings of the National Academy of Science USA, 112, 15130–15135. https://doi.org/10.1073/pnas.1514637112

Article  CAS  Google Scholar 

Galland, P. (1996). Ultraviolet killing and photoreactivation of Phycomyces spores. Microbiological Research, 151, 9–17. https://doi.org/10.1016/S0944-5013(96)80050-4

Article  CAS  Google Scholar 

Hartmann, K. M. (1966). A general hypothesis to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochemistry & Photobiology, 5, 349–366. https://doi.org/10.1111/j.1751-1097.1966.tb05937.x

Article  CAS  Google Scholar 

Hartmann, K. M. (1977). Aktionsspektrometrie. In W. Hoppe, W. Lohmann, H. Markl, & H. Ziegler (Eds.), Biophysik: Ein Lehrbuch (pp. 197–222). Berlin, Heidelberg: Springer. (English edition: 1983. <Emphasis Type="Italic">Biophysics</Emphasis>. (pp. 115-144). Springer, New York.).

Google Scholar 

Schäfer, E. (1975). A new approach to explain the “high irradiance responses” of photomorphogenesis on the basis of phytochrome. Journal of Mathematical Biology, 2, 41–56. https://doi.org/10.1007/BF00276015

Article  Google Scholar 

Hertel, R. (1980). Phototropism in lower plants. In F. Lenci & G. Colombetti (Eds.), Photoreception and sensory transduction in aneural organisms (pp. 89–105). Plenum.

Chapter  Google Scholar 

Su, D., Kabir, M. P., Orozco-Gonzalez, Y., Gozem, S., & Gadda, G. (2019). Fluorescence properties of flavin semiquinone radicals in nitronate monooxygenase. ChemBioChem, 20, 1646–1652. https://doi.org/10.1002/cbic.201900016

Article  CAS  PubMed  Google Scholar 

Kopka, B., Magerl, K., Savitsky, A., Davari, M. D., Röllen, K., Bocola, M., Dick, B., Schwaneberg, U., Jaeger, K.-E., & Krauss, U. (2017). Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Scientific Reports, 7, 13346. https://doi.org/10.1038/s41598-017-13420-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad, M. (2016). Photocycle and signaling mechanisms of plant cryptochromes. Current Opinions in Plant Biology, 33, 108–115. https://doi.org/10.1016/j.pbi.2016.06.013

Article  CAS  Google Scholar 

Bouly, J.-P., Schleicher, E., Dionisio-Sese, M., Vandenbussche, F., van der Straeten, D., Bakrim, N., Meier, S., Batschauer, A., Galland, P., Bittl, R., & Ahmad, M. (2007). Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. Journal of Biological Chemistry, 282, 9383–9391. https://doi.org/10.1074/jbc.M609842200

Article  CAS  PubMed  Google Scholar 

Galland, P., Corrochano, L. M., & Lipson, E. D. (1989). Subliminal light control of dark adaptation kinetics in Phycomyces phototropism. Photochemistry & Photobiology, 49, 485–492. https://doi.org/10.1111/j.1751-1097.1989.tb09199.x

Article  CAS  Google Scholar 

Galland, P., Orejas, M., & Lipson, E. D. (1989). Light-controlled adaptation in Phycomyces: Evidence for a novel yellow-light absorbing pigment. Photochemistry & Photobiology, 49, 493–500. https://doi.org/10.1111/j.1751-1097.1989.tb09200.x

Article  CAS  Google Scholar 

Chen, X. Y., Xiong, Y. Q., & Lipson, E. D. (1993). Action spectrum for subliminal light control of adaptation in Phycomyces phototropism. Photochemistry & Photobiology, 58, 425–433. https://doi.org/10.1111/j.1751-1097.1993.tb09585.x

Article  CAS  Google Scholar 

Baneryee, R., Schleicher, E., Meier, S., Muñoz Viana, R., Pokorny, R., Ahmad, M., Bittl, R., & Batschauer, A. (2007). The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. Journal of Biological Chemistry, 282, 14916–14922. https://doi.org/10.1074/jbc.M700616200

Article  CAS  Google Scholar 

Herbel, V., Orth, C., Wenzel, R., Ahmad, M., Bittl, R., & Batschauer, A. (2013). Lifetimes of Arabidopsis cryptochrome signaling states in vivo. Plant Journal, 74, 583–592. https://doi.org/10.1111/tpj.12144

Article  CAS  Google Scholar 

Kottke, T., Batschauer, A., Ahmad, M., & Heberle, J. (2006). Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. Biochemistry, 45, 2472–2479. https://doi.org/10.1021/bi051964b

Article  CAS  PubMed  Google Scholar 

Dümmer, M., Spasić, S. Z., Feil, M., Michalski, C., Forreiter, C., & Galland, P. (2021). Tangent algorithm for photogravitropic balance in plants and Phycomyces blakesleeanus: Roles for EHB1 and NPH3 of Arabidopsis thaliana. Journal of Plant Physiology, 260, 153396. https://doi.org/10.1016/j.jplph.2021.153396

Article  CAS  PubMed  Google Scholar 

Corrochano, L. M., Kuo, A., Marcet-Houben, M., et al. (2016). Expansion of signal transduction pathways in fungi by extensive genome duplication. Current Biology, 26, 1577–1584. https://doi.org/10.1016/j.cub.2016.04.038

留言 (0)

沒有登入
gif