Nitric oxide brings innate immune resistance to M. tuberculosis infection among high-risk household contacts of pulmonary tuberculosis patients

Bolajoko EB, Arinola OG, Odaibo GN, et al. 2020 Plasma levels of tumor necrosis factor-alpha, interferon-gamma, inducible nitric oxide synthase, and 3-nitrotyrosine in drug-resistant and drug-sensitive pulmonary tuberculosis patients, Ibadan, Nigeria. Int. J. Mycobacteriol. 9 185–189

Article  CAS  PubMed  Google Scholar 

Braverman J and Stanley SA 2017 Nitric oxide modulates macrophage responses to M. tuberculosis infection through activation of HIF-1α and repression of NF-kB. J. Immunol. 199 1805–1816

CAS  Google Scholar 

Brugmann WB and Firmani MA 2005 Low concentrations of nitric oxide exert a hormetic effect on M. tuberculosis in vitro. J. Clin. Microbiol. 43 4844–4846

Article  CAS  PubMed  PubMed Central  Google Scholar 

Butov DO, Kuzhko M, Butova T, et al. 2016 Changes in nitric oxide synthase and nitrite and nitrate serum levels in patients with or without multidrug-resistant tuberculosis undergoing the intensive phase of antituberculosis therapy. Int. J. Mycobacteriol. 5 S154–S155

Article  PubMed  Google Scholar 

Chan J, Xing Y, Magliozzo RS, et al. 1992 Killing of virulent M. tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175 1111–1122

Article  CAS  PubMed  Google Scholar 

Chan J, Tanaka K, Bloom BR, et al. 1995 Effects of nitric oxide synthase inhibitors on murine infection with M. tuberculosis. Infect. Immun. 63 736–740

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi H-S, Rai PR, Chu HW, et al. 2002 Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 166 178–186

Article  PubMed  Google Scholar 

Cooper AM, Adams LB, Ehlers S, et al. 2002 IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol. 10 221–226

Article  CAS  PubMed  Google Scholar 

de Oliveira LRC, Peresi E, Calvi SA, et al. 2014 Analysis of Toll-like receptors, iNOS and cytokine profiles in patients with pulmonary tuberculosis during anti-tuberculosis treatment. PLoS One 9 e88572

Article  PubMed  PubMed Central  Google Scholar 

Dlugovitzky D, Bay ML, Bottasso OA, et al. 2000 Influence of disease severity on nitrite and cytokine production by peripheral blood mononuclear cells (PBMC) from patients with pulmonary tuberculosis (TB). Clin. Exp. Immunol. 122 343–349

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doi T, Ando M, Maeda H, et al. 1993 Resistance to nitric oxide in Mycobacterium avium complex and its implication in pathogenesis. Infect. Immun. 61 1980–1989

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dzodzomenyo M, Ghansah A, Ensaw N, et al. 2018 Inducible nitric oxide synthase 2 promoter polymorphism and malaria disease severity in children in Southern Ghana. PLoS One 13 e0202218

Article  PubMed  PubMed Central  Google Scholar 

Flynn JL, Scanga CA, Tanaka KE, et al. 1998 Effects of aminoguanidine on latent murine tuberculosis1. J. Immunol. 160 1796–1803

Article  CAS  PubMed  Google Scholar 

Global Tuberculosis Report 2022 (https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022)

Gómez LM, Anaya J-M, Vilchez JR, et al. 2007 A polymorphism in the inducible nitric oxide synthase gene is associated with tuberculosis. Tuberculosis 87 288–294

Google Scholar 

Idh J, Mekonnen M, Aseffa A, et al. 2012 Resistance to first-line anti-TB drugs is associated with reduced nitric oxide susceptibility in M. tuberculosis. PLoS One 7 e39891

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung J-Y, Madan-Lala R, Robinson CM, et al. 2013 The intracellular environment of human macrophages that produce nitric oxide promotes growth of Mycobacteria. Infect. Immun. 81 3198–3209

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleinert H, Pautz A, Linker K and Schwarz PM 2004 Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500 255–266

Article  CAS  PubMed  Google Scholar 

Kumar A, Singh KP, Raziuddin M, et al. 2017 iNOS polymorphism modulates iNOS/NO expression via impaired antioxidant and ROS content in P. vivax and P. falciparum infection. Redox Biol. 15 192–206

Article  PubMed  PubMed Central  Google Scholar 

Kuo HP, Wang CH, Lu LC, et al. 2000 Nitric oxide modulates interleukin-1beta and tumor necrosis factor-alpha synthesis by alveolar macrophages in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 161 192–199

Article  CAS  PubMed  Google Scholar 

Mishra BB, Rathinam VAK, Sassetti CM, et al. 2013 Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14 52–60

Article  CAS  PubMed  Google Scholar 

Mishra BB, Lovewell RR, Dubuke ML, et al. 2017 Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat. Microbiol. 2 17072

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nathan C and Shiloh MU 2000 Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97 8841–8848

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni J, Xu L, Li W, et al. 2019 Targeted metabolomics for serum amino acids and acylcarnitines in patients with lung cancer. Exp. Ther. Med. 18 188–198

CAS  PubMed  PubMed Central  Google Scholar 

Nicholson S, da Bonecini-Almeida M, G, Boechat N,, et al. 1996 Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 183 2293–2302

Article  CAS  PubMed  Google Scholar 

O’Brien L, Carmichael J, Lowrie DB, et al. 1994 Strains of M. tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect. Immun. 62 5187–5190

Article  PubMed  PubMed Central  Google Scholar 

Panda S, Tiwari A, Singh A, et al. 2019a Status of vitamin D and the associated host factors in pulmonary tuberculosis patients and their household contacts: A cross sectional study. J. Steroid Biochem. Mol. Biol. 193 105419

Article  CAS  PubMed  Google Scholar 

Panda S, Tiwari A, Singh A, et al. 2019b Association of Fok1 VDR polymorphism with vitamin D and its associated molecules in pulmonary tuberculosis patients and their household contacts. Sci. Rep. 9 15251

Article  PubMed  PubMed Central  Google Scholar 

Panda S, Faisal S, Singh A, et al. 2022 Role of regulatory proteins involved in iron homeostasis in pulmonary tuberculosis patients and their household contacts. Indian J. Clin. Biochem. 37 77–84

Article  CAS  PubMed  Google Scholar 

Panda S, Faisal S, Singh A, et al. 2023a Protective role of human beta-defensin-2 and cathelicidin in high risk close household contacts of pulmonary tuberculosis. Clin. Immunol. Commun. 3 23–30

Article  CAS  Google Scholar 

Panda S, Tiwari A, Singh A, et al. 2023b Protective role of vitamin D against development of active tuberculosis in close household contacts of pulmonary tuberculosis patients: a prospective cohort study. Indian J. Clin. Biochem. 39 248–256

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif