Assessment of image quality and diagnostic accuracy for cervical spondylosis using T2w-STIR sequence with a deep learning-based reconstruction approach

Lv YW, Tian W, Chen DF, Liu YJ, Wang LF, Duan FF (2018) The prevalence and associated factors o symptomatic cervical Spondylosis in Chinese adults: a community-based cross-sectional study. Bmc Musculoskel Disord 19:1–2

Article  Google Scholar 

Theodore N (2020) Degenerative cervical spondylosis. N Engl J Med 383(2):159–168

Article  CAS  PubMed  Google Scholar 

Bernabeu-Sanz A, Molla-Torro JV, Lopez-Celada S, Lopez PM, Fernandez-Jover E (2020) MRI evidence of brain atrophy, white matter damage, and functional adaptive changes in patients with cervical spondylosis and prolonged spinal cord compression. Eur Radiol 30(1):357–369

Article  PubMed  Google Scholar 

Ghogawala Z, Terrin N, Dunbar MR, Breeze JL, Freund KM, Kanter AS et al (2021) Effect of ventral vs dorsal spinal surgery on patient-reported physical functioning in patients with cervical spondylotic myelopathy a randomized clinical trial. JAMA-J Am Med Assoc 325(10):942–951

Article  Google Scholar 

Lebl DR, Bono CM (2015) Update on the diagnosis and management of cervical spondylotic myelopathy. J Am Acad Orthop Surg 23(11):648–660

Article  PubMed  Google Scholar 

Yang XY, Karis DSA, Vleggeert-Lankamp CLA (2020) Association between modic changes, disc degeneration, and neck pain in the cervical spine: a systematic review of literature. Spine J 20(5):754–764

Article  PubMed  Google Scholar 

Deininger-Czermak E, Gascho D, Franckenberg S, Kalin P, Bluthgen C, Villefort C et al (2023) Added value of ultra-short echo time and fast field echo using restricted echo-spacing MR imaging in the assessment of the osseous cervical spine. Radiol Med 128(2):234–241

Article  PubMed  PubMed Central  Google Scholar 

Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ et al (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131

Article  PubMed  Google Scholar 

Nguyen XV, Oztek MA, Nelakurti DD, Brunnquell CL, Mossa-Basha M, Haynor DR et al (2020) Applying artificial intelligence to mitigate effects of patient motion or other complicating factors on image quality. Top Magn Reson Imaging TMRI 29(4):175–180

Article  PubMed  Google Scholar 

Lebel RM (2020) Performance characterization of a novel deep learning-based MR image reconstruction pipeline arXiv. arXiv. pp 18

Koch KM, Sherafati M, Arpinar VE, Bhave S, Ausman R, Nencka AS et al (2021) Analysis and evaluation of a deep learning reconstruction approach with denoising for orthopedic MRI. Radiol Artif Intell 3(6):e200278

Article  PubMed  PubMed Central  Google Scholar 

Kim M, Kim HS, Kim HJ, Park JE, Park SY, Kim YH et al (2021) Thin-slice pituitary MRI with deep learning-based reconstruction: diagnostic performance in a postoperative setting. Radiology 298(1):114–122

Article  PubMed  Google Scholar 

Muscogiuri G, Martini C, Gatti M, Dell’Aversana S, Ricci F, Guglielmo M et al (2021) Feasibility of late gadolinium enhancement (LGE) in ischemic cardiomyopathy using 2D-multisegment LGE combined with artificial intelligence reconstruction deep learning noise reduction algorithm. Int J Cardiol 343:164

Article  PubMed  Google Scholar 

Park JC, Park KJ, Park MY, Kim MH, Kim JK (2022) Fast T2-weighted imaging with deep learning-based reconstruction: evaluation of image quality and diagnostic performance in patients undergoing radical prostatectomy. J Magn Reson Imaging 55(6):1735–1744

Article  PubMed  Google Scholar 

Kiryu S, Akai H, Yasaka K, Tajima T, Kunimatsu A, Yoshioka N et al (2023) Clinical impact of deep learning reconstruction in MRI. Radiographics 43(6):e220133

Article  PubMed  Google Scholar 

Yasaka K, Tanishima T, Ohtake Y, Tajima T, Akai H, Ohtomo K et al (2022) Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes. Eur Radiol 32(9):6118–6125

Article  CAS  PubMed  Google Scholar 

Yasaka K, Tanishima T, Ohtake Y, Tajima T, Akai H, Ohtomo K et al (2022) Deep learning reconstruction for the evaluation of neuroforaminal stenosis using 1.5T cervical spine MRI: comparison with 3T MRI without deep learning reconstruction. Neuroradiology 64(10):2077–2083

Article  PubMed  Google Scholar 

Zerunian M, Pucciarelli F, Caruso D, De Santis D, Polici M, Masci B et al (2023) Fast high-quality MRI protocol of the lumbar spine with deep learning-based algorithm: an image quality and scanning time comparison with standard protocol. Skeletal Radiol 53(1):151–159

Article  PubMed  PubMed Central  Google Scholar 

Kashiwagi N, Sakai M, Tsukabe A, Yamashita Y, Fujiwara M, Yamagata K, Nakamoto A, Nakanishi K, Tomiyama N (2022) Ultrafast cervcial spine MRI protocol using deep learning-based reconstruction: diagnostic equivalence to a conventional protocol. Eur J Radiol 1(156):110531

Article  Google Scholar 

Yoo H, Yoo R-E, Choi SH, Hwang I, Lee JY, Seo JY et al (2023) Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI. Eur Radiol 33:8656

Article  CAS  PubMed  Google Scholar 

Almansour H, Herrmann J, Gassenmaier S, Afat S, Jacoby J, Koerzdoerfer G et al (2023) Deep learning reconstruction for accelerated spine MRI: prospective analysis of interchangeability. Radiology 306(3):e212922

Article  PubMed  Google Scholar 

Lin W, He C, Xie F, Chen T, Zheng G, Yin H et al (2023) Assessment of bone density using the 1.5 T or 3.0 T MRI based vertebral bone quality score in older patients undergoing spine surgery: does field strength matter? Spine J 23(8):1172–1181

Article  PubMed  Google Scholar 

Shi R-y, Yao Q-y, Wu L-m, Xu J-r (2018) Breast lesions: diagnosis using diffusion weighted imaging at 1.5T and 3.0T-systematic review and meta-analysis. Clin Breast Cancer 18(3):E305–E320

Article  PubMed  Google Scholar 

Sun S, Tan ET, Mintz DN, Sahr M, Endo Y, Nguyen J et al (2022) Evaluation of deep learning reconstructed high-resolution 3D lumbar spine MRI. Eur Radiol 32(9):6167–6177

Article  CAS  PubMed  Google Scholar 

Jebb AT, Ng V, Tay L (2021) A review of key likert scale development advances: 1995–2019. Front Psychol 12:637547

Article  PubMed  PubMed Central  Google Scholar 

Kang Y, Lee JW, Koh YH, Hur S, Kim SJ, Chai JW et al (2011) New MRI grading system for the cervical canal stenosis. Am J Roentgenol 197(1):W134–W140

Article  Google Scholar 

Park HJ, Kim SS, Lee SY, Park NH, Chung EC, Rho MH et al (2013) A practical MRI grading system for cervical foraminal stenosis based on oblique sagittal images. Br J Radiol 86(1025):20120512

Article  Google Scholar 

Engel G, Bender YY, Adams LC, Boker SM, Fahlenkamp UL, Wagner M et al (2019) Evaluation of osseous cervical foraminal stenosis in spinal radiculopathy using susceptibility-weighted magnetic resonance imaging. Eur Radiol 29(4):1855–1862

Article  PubMed  Google Scholar 

Suzuki A, Daubs MD, Hayashi T, Ruangchainikom M, Xiong CJ, Phan K et al (2017) Magnetic resonance classification system of cervical intervertebral disk degeneration its validity and meaning. Clin Spine Surg 30(5):E547–E553

Article  PubMed  Google Scholar 

Altman DG (1991) Statistics in medical journals—developments in the 1980s. Stat Med 10(12):1897–1913

Article  CAS  PubMed  Google Scholar 

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

Article  CAS  PubMed  Google Scholar 

Luo CA, Lim AS, Lu ML, Chiu PY, Lai PL, Niu CC (2022) The surgical outcome of multilevel anterior cervical discectomy and fusion in myelopathic elderly and younger patients. Sci Rep 12(1):4495

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee S, Jee WH, Jung JY, Lee SY, Ryu KS, Ha KY (2015) MRI of the lumbar spine: comparison of 3D isotropic turbo spin-echo SPACE sequence versus conventional 2D sequences at 3.0 T. Acta Radiol 56(2):174–181

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif