Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223. https://doi.org/10.1098/rsob.200223.
Article CAS PubMed PubMed Central Google Scholar
Wallace HA, Basehore BM, Zito PM, “Wound healing phases,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2023. Accessed: Aug. 11, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK470443/
Polcz ME, Barbul A. The role of vitamin A in wound healing. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr. 2019;34(5):695–700. https://doi.org/10.1002/ncp.10376.
Oda Y, Tu C-L, Menendez A, Nguyen T, Bikle DD. Vitamin D and calcium regulation of epidermal wound healing. J Steroid Biochem Mol Biol. 2016;164:379–85. https://doi.org/10.1016/j.jsbmb.2015.08.011.
Article CAS PubMed Google Scholar
Pazyar N, Houshmand G, Yaghoobi R, Hemmati AA, Zeineli Z, Ghorbanzadeh B. Wound healing effects of topical Vitamin K: a randomized controlled trial. Indian J Pharmacol. 2019;51(2):88–92. https://doi.org/10.4103/ijp.IJP_183_18.
Article CAS PubMed PubMed Central Google Scholar
Hu H, et al. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly(lactic- co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro. ACS Appl Mater Interfaces. 2018;10(27):22939–50. https://doi.org/10.1021/acsami.8b04903.
Article CAS PubMed Google Scholar
Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J. 2017;8(1):23–33. https://doi.org/10.1007/s13167-017-0081-y.
Article PubMed PubMed Central Google Scholar
Carolina E, et al. Glucocorticoid impaired the wound healing ability of endothelial progenitor cells by reducing the expression of CXCR4 in the PGE2 pathway. Front Med. 2018;28:5:276. https://doi.org/10.3389/fmed.2018.00276
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. https://doi.org/10.1152/physrev.00067.2017.
Article CAS PubMed Google Scholar
Silva JR, Burger B, Kühl CMC, Candreva T, dos Anjos MBP, Rodrigues HG. Wound healing and omega-6 fatty acids: from inflammation to repair. Mediators Inflamm. 2018;2018:1. https://doi.org/10.1155/2018/2503950.
Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Adv Skin Wound Care. 2012;25(7):304–14. https://doi.org/10.1097/01.ASW.0000416006.55218.d0.
Article PubMed PubMed Central Google Scholar
Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl. 2015;48:651–62. https://doi.org/10.1016/j.msec.2014.12.068.
Article CAS PubMed Google Scholar
L. Li et al., “Quantitative assessment of angiogenesis in skin wound healing by multi-optical imaging techniques,” Front. Phys., vol. 10, 2022, Accessed: Aug. 11, 2023. [Online]. Available: https://www.frontiersin.org/articles/https://doi.org/10.3389/fphy.2022.894901
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial transient receptor potential channels and vascular remodeling: extracellular Ca2 + entry for angiogenesis, arteriogenesis and vasculogenesis. Front Physiol. 2019;10:1618. https://doi.org/10.3389/fphys.2019.01618.
Fallah A, et al. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother. 2019;110:775–85. https://doi.org/10.1016/j.biopha.2018.12.022.
Article CAS PubMed Google Scholar
Qing C, “The molecular biology in wound healing & non-healing wound,” Chin. J. Traumatol. Zhonghua Chuang Shang Za Zhi. 2017; 20 (4), 189–193 https://doi.org/10.1016/j.cjtee.2017.06.001.
Rust R, Gantner C, Schwab ME. Pro- and antiangiogenic therapies: current status and clinical implications. FASEB J. 2019;33:34–48. https://doi.org/10.1096/fj.201800640RR.
“Biomimetics | Free Full-Text | The role of the extracellular matrix (ECM) in wound healing: a review.” Accessed: Mar. 13, 2024. [Online]. Available: https://www.mdpi.com/2313-7673/7/3/87
Adler M, et al. Principles of cell circuits for tissue repair and fibrosis. iScience. 2020;23(2):100841. https://doi.org/10.1016/j.isci.2020.100841.
Article CAS PubMed PubMed Central Google Scholar
Moriyama M, et al. Beneficial effects of the genus aloe on wound healing, cell proliferation, and differentiation of epidermal keratinocytes. PLoS ONE. 2016;11(10):e0164799. https://doi.org/10.1371/journal.pone.0164799.
Article CAS PubMed PubMed Central Google Scholar
Belvedere R, Novizio N, Morello S, Petrella A. The combination of mesoglycan and VEGF promotes skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk. Sci Rep. 2022;12(1):1. https://doi.org/10.1038/s41598-022-15227-1.
Zhao H, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6(1):1. https://doi.org/10.1038/s41392-021-00658-5.
Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine Nanotechnol Biol Med. 2015;11(6):1551–73. https://doi.org/10.1016/j.nano.2015.03.002.
Park JW, Hwang SR, Yoon I-S. Advanced growth factor delivery systems in wound management and skin regeneration. Mol J Synth Chem Nat Prod Chem. 2017;22:8. https://doi.org/10.3390/molecules22081259.
Öhnstedt E, Tomenius HL, Vågesjö E, Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opin Drug Discov. 2019;14(5):485–97. https://doi.org/10.1080/17460441.2019.1588879.
Article CAS PubMed Google Scholar
Zhang T, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother. 2020;129:110287. https://doi.org/10.1016/j.biopha.2020.110287.
Article CAS PubMed Google Scholar
Zheng S-Y, et al. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes. 2023;14(4):364–95. https://doi.org/10.4239/wjd.v14.i4.364.
Article PubMed PubMed Central Google Scholar
Peng Y, et al. Comparative evaluation of the wound-healing potency of recombinant bFGF and ski gene therapy in rats. Growth Factors. 2016;34(3–4):119–27. https://doi.org/10.1080/08977194.2016.1200570.
Article CAS PubMed Google Scholar
Gilligan AM, Waycaster CR, Motley TA. Cost-effectiveness of becaplermin gel on wound healing of diabetic foot ulcers. Wound Repair Regen. 2015;23(3):353–60. https://doi.org/10.1111/wrr.12285.
Heyneman A, Hoeksema H, Vandekerckhove D, Pirayesh A, Monstrey S. The role of silver sulphadiazine in the conservative treatment of partial thickness burn wounds: a systematic review. Burns J Int Soc Burn Inj. 2016;42(7):1377–86. https://doi.org/10.1016/j.burns.2016.03.029.
Dunn J, Liu Y, Banov F, Denison S, Banov D. A topical naltrexone formulation for surgical wound healing: a case report. J Cosmet Dermatol. 2020;20(3). https://doi.org/10.1111/jocd.13604.
McLaughlin PJ, Cain JD, Titunick MB, Sassani JW, Zagon IS. Topical naltrexone is a safe and effective alternative to standard treatment of diabetic wounds. Adv Wound Care. 2017;6(9):279–88. https://doi.org/10.1089/wound.2016.0725.
Kogan S, Sood A, Garnick MS. Zinc and wound healing: a review of zinc physiology and clinical applications. Wounds Compend Clin Res Pract. 2017;29(4):102–6.
“Continuous electrical current and zinc sulphate administered by transdermal iontophoresis improves skin healing in diabetic rats induced by alloxan: morphological and ultrastructural analysis.” Accessed: Jan. 06, 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164307/
Adjepong D, Jahangir S, Malik BH, Dennis Adjepong MBA, Jahangir S, Malik BH. The effect of zinc on post-neurosurgical wound healing: a review. Cureus. 2020;12:1. https://doi.org/10.7759/cureus.6770.
Zhang H, et
留言 (0)