Computational Tools for Neuronal Morphometric Analysis: A Systematic Search and Review

Abdellah, M., Hernando, J., Eilemann, S., Lapere, S., Antille, N., Markram, H., & Schürmann, F. (2018). NeuroMorphoVis: A collaborative framework for analysis and visualization of neuronal morphology skeletons reconstructed from microscopy stacks. Bioinformatics, 34(13), i574–i582. https://doi.org/10.1093/bioinformatics/bty231

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguiar, P., Sousa, M., & Szucs, P. (2013). Versatile morphometric analysis and visualization of the three-dimensional structure of neurons. Neuroinformatics, 11(4), 393–403. https://doi.org/10.1007/s12021-013-9188-z

Article  PubMed  Google Scholar 

Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., . . . Yuste, R. (2008). Petilla terminology: Nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 9(7), 557–568. https://doi.org/10.1038/nrn2402

Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: A central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251. https://doi.org/10.1523/JNEUROSCI.2055-07.2007

Article  CAS  PubMed  Google Scholar 

Athey, T. L., Teneggi, J., Vogelstein, J. T., Tward, D. J., Mueller, U., & Miller, M. I. (2021). Fitting splines to axonal arbors quantifies relationship between branch order and geometry. Frontiers in Neuroinformatics, 15, 704627.

Article  PubMed  PubMed Central  Google Scholar 

Bakker, R., & Tiesinga, P. H. (2016). Web-based neuron morphology viewer as an aid to develop new standards for neuron morphology file formats. Frontiers in Neuroinformatics Conference Abstract: Neuroinformatics, 2016,. https://doi.org/10.3389/conf.fninf.2016.20.00079

Bates, A. S., Manton, J. D., Jagannathan, S. R., Costa, M., Schlegel, P., Rohlfing, T., & Jefferis, G. S. (2020). The natverse, a versatile toolbox for combining and analysing neuroanatomical data. eLife, 9, 1–35. https://doi.org/10.7554/eLife.53350

Article  Google Scholar 

Beyer, J., Troidl, J., Boorboor, S., Hadwiger, M., Kaufman, A., & Pfister, H. (2022). A survey of visualization and analysis in high-resolution connectomics. Computer Graphics Forum, 41(3), 573–607. https://doi.org/10.1111/cgf.14574

Article  Google Scholar 

Billeci, L., Magliaro, C., Pioggia, G., & Ahluwalia, A. (2013). NEuronMOrphological analysis tool: Open-source software for quantitative morphometrics. Frontiers in Neuroinformatics, 6, 1–13. https://doi.org/10.3389/fninf.2013.00002

Article  Google Scholar 

Cajal, S. R. (1899). Textura del sistema nervioso del hombre y de los vertebrados: Estudios sobre el plan estructural y composición histológica de los centros nerviosos adicionados de consideraciones fisiológicas fundadas en los nuevos descubrimientos. Madrid: Nicolás Moya.

Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84(1–2), 49–54. https://doi.org/10.1016/S0165-0270(98)00091-0

Article  CAS  PubMed  Google Scholar 

Cuntz, H., Forstner, F., Borst, A., & Häusser, M. (2010). One rule to grow them all: A general theory of neuronal branching and its practical application. PLoS Computational Biology, 6(8), e1000877.

Article  PubMed  PubMed Central  Google Scholar 

Defelipe, J., López-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Anderson, S., . . . Ascoli, G. A. (2013). New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 14(3), 202–216. https://doi.org/10.1038/nrn3444

Dias, R. A., Gonçalves, B. P., da Rocha, J. F., da Cruz e Silva, O. A., da Silva, A. M., & Vieira, S. I. (2017). NeuronRead, an open source semi-automated tool for morphometric analysis of phase contrast and fluorescence neuronal images. Molecular and Cellular Neuroscience, 85, 57–69. https://doi.org/10.1016/j.mcn.2017.08.002

Article  CAS  PubMed  Google Scholar 

Dipietro, L., Gonzalez-Mego, P., Ramos-Estebanez, C., Zukowski, L. H., Mikkilineni, R., Rushmore, R. J., & Wagner, T. (2023). The evolution of Big Data in neuroscience and neurology. Journal of Big Data, 10(1), 1–53. https://doi.org/10.1186/s40537-023-00751-2

Article  Google Scholar 

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Article  Google Scholar 

Feng, L., Zhao, T., & Kim, J. (2015). neuTube 1.0: A new design for efficient neuron reconstruction software based on the SWC format. Eneuro, 2(1), 0049–14.2014. https://doi.org/10.1523/ENEURO.0049-14.2014

Article  Google Scholar 

Ferreira, T. A., Blackman, A. V., Oyrer, J., Jayabal, S., Chung, A. J., Watt, A. J., . . . Van Meyel, D. J. (2014). Neuronal morphometry directly from bitmap images. Nature methods, 11(10), 982–984.

Gill, S., & Kumara, V. M. R. (2021). Comparative neurodevelopment effects of bisphenol A and bisphenol F on rat fetal neural stem cell models. Cells, 10(4), 793. https://doi.org/10.3390/cells10040793

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillette, T. A., Brown, K. M., & Ascoli, G. A. (2011). The DIADEM metric: Comparing multiple reconstructions of the same neuron. Neuroinformatics, 9(2–3), 233–245. https://doi.org/10.1007/s12021-011-9117-y

Article  PubMed  PubMed Central  Google Scholar 

Glaser, J. R., & Glaser, E. M. (1990). Neuron imaging with neurolucida - A PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5), 307–317. https://doi.org/10.1016/0895-6111(90)90105-K

Article  CAS  PubMed  Google Scholar 

Goetz, J., Jessen, Z. F., Jacobi, A., Mani, A., Cooler, S., Greer, D., . . . Schwartz, G. W. (2022). Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Reports, 40(2). https://doi.org/10.1016/j.celrep.2022.111040

Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x

Article  PubMed  Google Scholar 

Halavi, M., Hamilton, K. A., Parekh, R., & Ascoli, G. A. (2012). Digital reconstructions of neuronal morphology: Three decades of research trends. Frontiers in Neuroscience, 6, 1–11. https://doi.org/10.3389/fnins.2012.00049

Article  Google Scholar 

Ho, S.-Y., Chao, C.-Y., Huang, H.-L., Chiu, T.-W., Charoenkwan, P., & Hwang, E. (2011). Neurphologyj: An automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinformatics, 12, 1–18.

Article  Google Scholar 

Insel, T. R., Landis, S. C., & Collins, F. S. (2013). The NIH BRAIN initiative. Science, 340(6133), 687–688. https://doi.org/10.1126/science.1239276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, S., Wang, Y., Liu, L., Ding, L., Ruan, Z., Dong, H.-W., . . . Peng, H. (2022). Petabyte-scale multi-morphometry of single neurons for whole brains. Neuroinformatics, 20(2), 525–536.

Junior, J. L. F. S., Viana, J., Reinhold, O., Jacob Jr., A. F. L., Alt, R., & Lobato, F. M. F. (2020). Social CRM tools: A systematic mapping study. International Conference on Business Information Systems, 250–261. https://doi.org/10.1007/978-3-030-61146-0_20

Karperien. (2007). Introduction to the FracLac Plugin. https://imagej.net/ij/plugins/fraclac/FLHelp/Introduction.htm

Khalil, R., Kallel, S., Farhat, A., & Dlotko, P. (2022). Topological Sholl descriptors for neuronal clustering and classification. PLOS Computational Biology, 18(6), e1010229. https://doi.org/10.1371/journal.pcbi.1010229

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kitchenham, B. & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Technical Report EBSE-2007-01, School of Computer Science and Mathematics, Keele University.

Laturnus, S., von Daranyi, A., Huang, Z., & Berens, P. (2020). MorphoPy: A python package for feature extraction of neural morphologies. Journal of Open Source Software, 5(52), 2339. https://doi.org/10.21105/joss.02339

Article  Google Scholar 

Liu, S., Zhang, D., Liu, S., Feng, D., Peng, H., & Cai, W. (2016). Rivulet: 3D neuron morphology tracing with iterative back-tracking. Neuroinformatics, 14(4), 387–401. https://doi.org/10.1007/s12021-016-9302-0

Article  PubMed  Google Scholar 

Liu, Y., Wang, G., Ascoli, G. A., Zhou, J., & Liu, L. (2022). Neuron tracing from light microscopy images: Automation, deep learning and bench testing. Bioinformatics, 38(24), 5329–5339. https://doi.org/10.1093/bioinformatics/btac712

Article  CAS  PubMed  PubMed Central  Google Scholar 

López-Cabrera, J. D., Hernández-Pérez, L. A., Orozco-Morales, R., & Lorenzo-Ginori, J. V. (2020). New morphological features based on the Sholl analysis for automatic classification of traced neurons. Journal of Neuroscience Methods, 343, 108835. https://doi.org/10.1016/j.jneumeth.2020.108835

Article  PubMed  Google Scholar 

Lynn, C. W., & Bassett, D. S. (2019). The physics of brain network structure, function and control. Nature Reviews Physics, 1(5), 318–332. https://doi.org/10.1038/s42254-019-0040-8

Article  Google Scholar 

Magliaro, C., Callara, A. L., Vanello, N., & Ahluwalia, A. (2019). Gotta trace ‘em all: A mini-review on tools and procedures for segmenting single neurons toward deciphering the structural connectome. Frontiers in Bioengineering and Biotechnology, 7, 1–8. https://doi.org/10.3389/fbioe.2019.00202

Article  Google Scholar 

Mahfoud, T. (2021). Visions of unification and integration: Building brains and communities in the european human brain project. New Media & Society, 23(2), 322–343.

Article  Google Scholar 

Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7

留言 (0)

沒有登入
gif