Allen, M. S., Scipioni, M., & Catana, C. (2024). New Horizons in Brain PET Instrumentation. PET Clinics, 19(1), 25–36. https://doi.org/10.1016/j.cpet.2023.08.001
Bailes, S. M., Gomez, D. E. P., Setzer, B., & Lewis, L. D. (2023). Resting-state fMRI signals contain spectral signatures of local hemodynamic response timing. bioRxiv. https://doi.org/10.1101/2023.01.25.525528
Baliyan, V., Das, C. J., Sharma, R., & Gupta, A. K. (2016). Diffusion weighted imaging: Technique and applications. World Journal of Radiology, 8(9), 785–798. https://doi.org/10.4329/wjr.v8.i9.785
Article PubMed PubMed Central Google Scholar
Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25(2), 390–397. https://doi.org/10.1002/mrm.1910250220
Article CAS PubMed Google Scholar
Bian, W., Jang, A., & Liu, F. (2023). Diffusion modeling with domain-conditioned prior guidance for accelerated MRI and qMRI reconstruction. Pre-print. https://arxiv.org/abs/2309.00783. Accessed 29 Jan 2024
Bilgic, B., Gagoski, B. A., Cauley, S. F., Fan, A. P., Polimeni, J. R., Grant, P. E., Wald, L. L., & Setsompop, K. (2015). Wave-CAIPI for highly accelerated 3D imaging. Magnetic Resonance in Medicine, 73(6), 2152–2162. https://doi.org/10.1002/mrm.25347
Bilgic, B., Chatnuntawech, I., Manhard, M. K., Tian, Q., Liao, C., Iyer, S. S., Cauley, S. F., Huang, S. Y., Polimeni, J. R., Wald, L. L., & Setsompop, K. (2019). Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction. Magnetic Resonance in Medicine, 82(4), 1343–1358. https://doi.org/10.1002/mrm.27813
Article PubMed PubMed Central Google Scholar
Bodurka, J., Ledden, P. J., van Gelderen, P., Chu, R., de Zwart, J. A., Morris, D., & Duyn, J. H. (2004). Scalable multichannel MRI data acquisition system. Magnetic Resonance in Medicine., 51(1), 165–167. https://doi.org/10.1002/mrm.10693
Bollmann, S., Mattern, H., Bernier, M., Robinson, S. D., Park, D., Speck, O., & Polimeni, J. R. (2022). Imaging of the pial arterial vasculature of the human brain in vivo using high-resolution 7T time-of-flight angiography. eLife, 11, e71186. https://doi.org/10.7554/eLife.71186
Article PubMed PubMed Central Google Scholar
Boubela, R., Kalcher, K., Huf, W., Kronnerwetter, C., Filzmoser, P., & Moser, E. (2013). Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest [Original Research]. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00168
Bouchard, M. B., Voleti, V., Mendes, C. S., Lacefield, C., Grueber, W. B., Mann, R. S., Bruno, R. M., & Hillman, E. M. C. (2015). Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nature Photonics, 9(2), 113–119. https://doi.org/10.1038/nphoton.2014.323
Article CAS PubMed PubMed Central Google Scholar
Boxerman, J. L., Hamberg, L. M., Rosen, B. R., & Weisskoff, R. M. (1995). Mr contrast due to intravascular magnetic susceptibility perturbations. Magnetic Resonance in Medicine, 34(4), 555–566. https://doi.org/10.1002/mrm.1910340412
Article CAS PubMed Google Scholar
Budinger, T. F., Bird, M. D., Frydman, L., Long, J. R., Mareci, T. H., Rooney, W. D., Rosen, B., Schenck, J. F., Schepkin, V. D., Sherry, A. D., Sodickson, D. K., Springer, C. S., Thulborn, K. R., Uğurbil, K., & Wald, L. L. (2016). Toward 20 T magnetic resonance for human brain studies: Opportunities for discovery and neuroscience rationale. Magnetic Resonance Materials in Physics, Biology and Medicine, 29(3), 617–639. https://doi.org/10.1007/s10334-016-0561-4
Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., Diedrichsen, J., Fitzgerald, T. H., Smittenaar, P., Helms, G., Lutti, A., & Weiskopf, N. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiology of Aging, 35(8), 1862–1872. https://doi.org/10.1016/j.neurobiolaging.2014.02.008
Article PubMed PubMed Central Google Scholar
Cardin, J. A., Crair, M. C., & Higley, M. J. (2020). Mesoscopic imaging: shining a wide light on large-scale neural dynamics. Neuron, 108(1), 33–43. https://doi.org/10.1016/j.neuron.2020.09.031
Article CAS PubMed PubMed Central Google Scholar
Carey, D., Caprini, F., Allen, M., Lutti, A., Weiskopf, N., Rees, G., Callaghan, M. F., & Dick, F. (2018). Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure. NeuroImage, 182, 429–440. https://doi.org/10.1016/j.neuroimage.2017.11.066
Chail, A., Saini, R. K., Bhat, P. S., Srivastava, K., & Chauhan, V. (2018). Transcranial magnetic stimulation: A review of its evolution and current applications. Industrial Psychiatry Journal, 27(2), 172–180. https://doi.org/10.4103/ipj.ipj_88_18
Article PubMed PubMed Central Google Scholar
Chen, J. E., & Glover, G. H. (2015). Functional Magnetic Resonance Imaging Methods. Neuropsychology Review, 25(3), 289–313. https://doi.org/10.1007/s11065-015-9294-9
Article PubMed PubMed Central Google Scholar
Chen, Q., Cichon, J., Wang, W., Qiu, L., Lee, S.-J.R., Campbell, N. R., Destefino, N., Goard, M. J., Fu, Z., Yasuda, R., Looger, L. L., Arenkiel, B. R., Gan, W.-B., & Feng, G. (2012). Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron, 76(2), 297–308. https://doi.org/10.1016/j.neuron.2012.07.011
Article CAS PubMed PubMed Central Google Scholar
Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A., & Hillman, E. M. C. (2014). A critical role for the vascular endothelium in functional neurovascular coupling in the brain. Journal of the American Heart Association, 3(3), e000787. https://doi.org/10.1161/JAHA.114.000787
Article CAS PubMed PubMed Central Google Scholar
Chen, J. E., Glover, G. H., Fultz, N. E., Rosen, B. R., Polimeni, J. R., & Lewis, L. D. (2021). Investigating mechanisms of fast BOLD responses: The effects of stimulus intensity and of spatial heterogeneity of hemodynamics. NeuroImage, 245, 118658. https://doi.org/10.1016/j.neuroimage.2021.118658
Cho, J., Gagoski, B., Kim, T. H., Wang, F., Manhard, M. K., Dean Iii, D., Kecskemeti, S., Caprihan, A., Lo, W.-C., Splitthoff, D. N., Liu, W., Polak, D., Cauley, S., Setsompop, K., Grant, P. E., & Bilgic, B. (2024). Time-efficient, high-resolution 3T whole-brain relaxometry using 3D-QALAS with wave-CAIPI readouts. Magnetic Resonance in Medicine, 91(2), 630–639. https://doi.org/10.1002/mrm.29865
Cohen, S. L., Bikson, M., Badran, B. W., & George, M. S. (2022). A visual and narrative timeline of US FDA milestones for Transcranial Magnetic Stimulation (TMS) devices. Brain Stimulation, 15(1), 73–75. https://doi.org/10.1016/j.brs.2021.11.010
Conner, I. P., Odom, J. V., Schwartz, T. L., & Mendola, J. D. (2007). Monocular activation of V1 and V2 in amblyopic adults measured with functional magnetic resonance imaging. Journal of American Association for Pediatric Ophthalmology and Strabismus, 11(4), 341–350. https://doi.org/10.1016/j.jaapos.2007.01.119
Davids, M., Dietz, P., Ruyters, G., Roesler, M., Klein, V., Beckett, A. J. S., Vu, A. T., Guérin, B., Feinberg, D. A., & Wald, L. L. (2023). Peripheral nerve stimulation informed design of a high-performance asymmetric head gradient coil. Magnetic Resonance in Medicine, 90(2), 784–801. https://doi.org/10.1002/mrm.29668
de Zwart, J. A., Ledden, P. J., van Gelderen, P., Bodurka, J., Chu, R., & Duyn, J. D. (2004). Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magnetic Resonance in Medicine., 51(1), 22–26. https://doi.org/10.1002/mrm.10678
de Zwart, J. A., Silva, A. C., van Gelderen, P., Kellman, P., Fukunaga, M., Chu, R., Koretsky, A. P., Frank, J. A., & Duyn, J. H. (2005). Temporal dynamics of the BOLD fMRI impulse response. NeuroImage, 24(3), 667–677. https://doi.org/10.1016/j.neuroimage.2004.09.013
Devor, A., Dunn, A. K., Andermann, M. L., Ulbert, I., Boas, D. A., & Dale, A. M. (2003). Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron, 39(2), 353–359. https://doi.org/10.1016/S0896-6273(03)00403-3
Article CAS PubMed Google Scholar
Devor, A., Tian, P., Nishimura, N., Teng, I. C., Hillman, E. M. C., Narayanan, S. N., Ulbert, I., Boas, D. A., Kleinfeld, D., & Dale, A. M. (2007). Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. Journal of Neuroscience, 27(16), 4452–4459. https://doi.org/10.1523/JNEUROSCI.0134-07.2007
留言 (0)