Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R., Griffanti, L., Douaud, G., Sotiropoulos, S. N., Jbabdi, S., Hernandez-Fernandez, M., Vallee, E., Vidaurre, D., Webster, M., McCarthy, P., Rorden, C., Daducci, A., Alexander, D. C., Zhang, H., Dragonu, I., Matthews, P. M.,…Smith, S. M. (2018). Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage, 166, 400-424.https://doi.org/10.1016/j.neuroimage.2017.10.034
Amgalan, A., Maher, A. S., Ghosh, S., Chui, H. C., Bogdan, P., & Irimia, A. (2022). Brain age estimation reveals older adults’ accelerated senescence after traumatic brain injury. GeroScience, 44(5), 2509–2525. https://doi.org/10.1007/s11357-022-00597-1
Article PubMed PubMed Central Google Scholar
Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y.-Y., Toga, A. W., & Thompson, P. M. (2012). Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease. Alzheimer Disease & Associated Disorders, 26(1), 17. https://doi.org/10.1097/WAD.0b013e3182163b62
Arleo, A., Bareš, M., Bernard, J. A., Bogoian, H. R., Bruchhage, M. M. K., Bryant, P., Carlson, E. S., Chan, C. C. H., Chen, L.-K., Chung, C.-P., Dotson, V. M., Filip, P., Guell, X., Habas, C., Jacobs, H. I. L., Kakei, S., Lee, T. M. C., Leggio, M., Misiura, M.,…Manto, M. (2024). Consensus Paper: Cerebellum and Aging. Cerebellum (London, England), 23(2), 802-832https://doi.org/10.1007/s12311-023-01577-7
Barron, S. A., Jacobs, L., & Kinkel, W. R. (1976). Changes in size of normal lateral ventricles during aging determined by computerized tomography. Neurology, 26(11), 1011–1011. https://doi.org/10.1212/WNL.26.11.1011
Article CAS PubMed Google Scholar
Becker, A. (2019). Artificial intelligence in medicine: What is it doing for us today? Health Policy and Technology, 8(2), 198–205. https://doi.org/10.1016/j.hlpt.2019.03.004
Beekly, D. L., Ramos, E. M., van Belle, G., Deitrich, W., Clark, A. D., Jacka, M. E., & Kukull, W. A. (2004). The national Alzheimer’s coordinating center (NACC) database: An Alzheimer disease database. Alzheimer Disease & Associated Disorders, 18(4), 270–277.
Beekly, D. L., Ramos, E. M., Lee, W. W., Deitrich, W. D., Jacka, M. E., Wu, J., Hubbard, J. L., Koepsell, T. D., Morris, J. C., & Kukull, W. A. (2007). The National Alzheimer’s Coordinating Center (NACC) database: The uniform data set. Alzheimer Disease & Associated Disorders, 21(3), 249–258.
Beheshti, I., Nugent, S., Potvin, O., & Duchesne, S. (2019). Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme. NeuroImage. Clinical, 24, 102063. https://doi.org/10.1016/j.nicl.2019.102063
Article PubMed PubMed Central Google Scholar
Besser, L. M., Kukull, W. A., Teylan, M. A., Bigio, E. H., Cairns, N. J., Kofler, J. K., ... & Nelson, P. T. (2018). The revised National Alzheimer’s Coordinating Center’s Neuropathology Form—available data and new analyses. Journal of Neuropathology & Experimental Neurology, 77(8), 717-726.
Biegon, A. (2021). Considering biological sex in traumatic brain injury. Frontiers in Neurology, 12, 576366. https://doi.org/10.3389/fneur.2021.576366
Article PubMed PubMed Central Google Scholar
Bigler, E. D. (2013). Traumatic brain injury, neuroimaging, and neurodegeneration. Frontiers in Human Neuroscience, 7, 395. https://doi.org/10.3389/fnhum.2013.00395
Article PubMed PubMed Central Google Scholar
Blinkouskaya, Y., Caçoilo, A., Gollamudi, T., Jalalian, S., & Weickenmeier, J. (2021). Brain aging mechanisms with mechanical manifestations. Mechanisms of Ageing and Development, 200, 111575. https://doi.org/10.1016/j.mad.2021.111575
Article CAS PubMed PubMed Central Google Scholar
Braun, M., Vaibhav, K., Saad, N. M., Fatima, S., Vender, J. R., Baban, B., Hoda, M. N., & Dhandapani, K. M. (2017). White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(1), 2614–2626. https://doi.org/10.1016/j.bbadis.2017.05.020
Article CAS PubMed Google Scholar
Chen, C.-C.V., Tung, Y.-Y., & Chang, C. (2011). A lifespan MRI evaluation of ventricular enlargement in normal aging mice. Neurobiology of Aging, 32(12), 2299–2307. https://doi.org/10.1016/j.neurobiolaging.2010.01.013
Cole, J. H., Leech, R., Sharp, D. J., Initiative ftAsDN. (2015). Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Annals of Neurology, 77(4), 571–581. https://doi.org/10.1002/ana.24367
Article PubMed PubMed Central Google Scholar
Cole, J. H., Marioni, R. E., Harris, S. E., & Deary, I. J. (2019). Brain age and other bodily ‘ages’: Implications for neuropsychiatry. Molecular Psychiatry, 24(2), 266–281. https://doi.org/10.1038/s41380-018-0098-1
Dartora, C., Marseglia, A., Mårtensson, G., Rukh, G., Dang, J., Muehlboeck, J.-S., Wahlund, L.-O., Moreno, R., Barroso, J., & Ferreira, D. (2024). A deep learning model for brain age prediction using minimally preprocessed T1w images as input. Frontiers in Aging Neuroscience, 15, 1303036.
Article PubMed PubMed Central Google Scholar
Durán, J. M., & Jongsma, K. R. (2021). Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. Journal of Medical Ethics, 47(5), 329–335.
Eom, K. S., Kim, J. H., Yoon, S. H., Lee, S.-J., Park, K.-J., Ha, S.-K., Choi, J.-G., Jo, K.-W., Kim, J., Kang, S. H., & Kim, J.-H. (2021). Gender differences in adult traumatic brain injury according to the Glasgow coma scale: A multicenter descriptive study. Chinese Journal of Traumatology, 24(6), 333–343. https://doi.org/10.1016/j.cjtee.2021.06.004
Article PubMed PubMed Central Google Scholar
Farbota, K. D. M., Sodhi, A., Bendlin, B. B., McLaren, D. G., Xu, G., Rowley, H. A., & Johnson, S. C. (2012). Longitudinal Volumetric Changes Following Traumatic Brain Injury: A Tensor Based Morphometry Study. Journal of the International Neuropsychological Society : JINS, 18(6), 1006–1018. https://doi.org/10.1017/S1355617712000835
Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Hacker, B. J., Imms, P. E., Dharani, A. M., Zhu, J., Chowdhury, N. F., Chaudhari, N. N., & Irimia, A. (2024). Identification and connectomic profiling of concussion using bayesian machine learning. Journal of Neurotrauma, 41(15–16), 1883–1900. https://doi.org/10.1089/neu.2023.0509
Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews. Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7
Hughes, E. J., Bond, J., Svrckova, P., Makropoulos, A., Ball, G., Sharp, D. J., Edwards, A. D., Hajnal, J. V., & Counsell, S. J. (2012). Regional changes in thalamic shape and volume with increasing age. NeuroImage, 63(3), 1134–1142. https://doi.org/10.1016/j.neuroimage.2012.07.043
Irimia, A., Goh, S.-Y.M., Torgerson, C. M., Vespa, P. M., & Van Horn, J. D. (2014). Structural and connectomic neuroimaging for the personalized study of longitudinal alterations in cortical shape, thickness, and connectivity after traumatic brain injury. Journal of Neurosurgical Sciences, 58(3), 129–144.
CAS PubMed PubMed Central Google Scholar
Irimia, A., Torgerson, C. M., Goh, S.-Y.M., & Van Horn, J. D. (2015). Statistical estimation of physiological brain age as a descriptor of senescence rate during adulthood. Brain Imaging and Behavior, 9(4), 678–689. https://doi.org/10.1007/s11682-014-9321-0
Article PubMed PubMed Central Google Scholar
Irimia, A., Ngo, V., Chaudhari, N. N., Zhang, F., Joshi, S. H., Penkova, A. N., O’Donnell, L. J., Sheikh-Bahaei, N., Zheng, X., & Chui, H. C. (2022). White matter degradation near cerebral microbleeds is associated with cognitive change after mild traumatic brain injury. Neurobiology of Aging, 120, 68–80. https://doi.org/10.1016/j.neurobiolaging.2022.08.010
Article PubMed PubMed Central Google Scholar
Jack, C. R., Petersen, R. C., Xu, Y., O’Brien, P. C., Smith, G. E., Ivnik, R. J., Boeve, B. F., Tangalos, E. G., & Kokmen, E. (2000). Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology, 55(4), 484–489. https://doi.org/10.1212/wnl.55.4.484
Jagoda, A. S., Bazarian, J. J., Bruns, J. J., Cantrill, S. V., Gean, A. D., Howard, P. K., Ghajar, J., Riggio, S., Wright, D. W., Wears, R. L., Bakshy, A., Burgess, P., Wald, M. M., & Whitson, R. R. (2008). Clinical Policy: Neuroimaging and decisionmaking in adult mild traumatic brain injury in the acute setting. Annals of Emergency Medicine, 52(6), 714–748. https://doi.org/10.1016/j.annemergmed.2008.08.021
Jin, W., Li, X., & Hamarneh, G. (2021). One Map Does Not Fit All: Evaluating Saliency Map Explanation on Multi-Modal Medical Images. https://doi.org/10.48550/ARXIV.2107.05047
Jobson, D. D., Hase, Y., Clarkson, A. N., & Kalaria, R. N. (2021). The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Communications, 3(3), fcab125. https://doi.org/10.1093/braincomms/fcab125
Article PubMed PubMed Central Google Scholar
Keles, A., Kul, O. A. H., & Bendechache, M. (2023). Saliency Maps as an Explainable AI Method in Medical Imaging: A Case Study on Brain Tumor Classification.
Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N., Araya, C., Yan, S., & Reblitz-Richardson, O. (2020). Captum: A unified and generic model interpretability library for PyTorch.
留言 (0)