Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R., Griffanti, L., Douaud, G., Sotiropoulos, S. N., Jbabdi, S., Hernandez-Fernandez, M., Vallee, E., Vidaurre, D., Webster, M., McCarthy, P., Rorden, C., Daducci, A., Alexander, D. C., Zhang, H., Dragonu, I., Matthews, P. M.,…Smith, S. M. (2018). Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage, 166, 400-424.https://doi.org/10.1016/j.neuroimage.2017.10.034

Amgalan, A., Maher, A. S., Ghosh, S., Chui, H. C., Bogdan, P., & Irimia, A. (2022). Brain age estimation reveals older adults’ accelerated senescence after traumatic brain injury. GeroScience, 44(5), 2509–2525. https://doi.org/10.1007/s11357-022-00597-1

Article  PubMed  PubMed Central  Google Scholar 

Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y.-Y., Toga, A. W., & Thompson, P. M. (2012). Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease. Alzheimer Disease & Associated Disorders, 26(1), 17. https://doi.org/10.1097/WAD.0b013e3182163b62

Article  Google Scholar 

Arleo, A., Bareš, M., Bernard, J. A., Bogoian, H. R., Bruchhage, M. M. K., Bryant, P., Carlson, E. S., Chan, C. C. H., Chen, L.-K., Chung, C.-P., Dotson, V. M., Filip, P., Guell, X., Habas, C., Jacobs, H. I. L., Kakei, S., Lee, T. M. C., Leggio, M., Misiura, M.,…Manto, M. (2024). Consensus Paper: Cerebellum and Aging. Cerebellum (London, England), 23(2), 802-832https://doi.org/10.1007/s12311-023-01577-7

Barron, S. A., Jacobs, L., & Kinkel, W. R. (1976). Changes in size of normal lateral ventricles during aging determined by computerized tomography. Neurology, 26(11), 1011–1011. https://doi.org/10.1212/WNL.26.11.1011

Article  CAS  PubMed  Google Scholar 

Becker, A. (2019). Artificial intelligence in medicine: What is it doing for us today? Health Policy and Technology, 8(2), 198–205. https://doi.org/10.1016/j.hlpt.2019.03.004

Article  Google Scholar 

Beekly, D. L., Ramos, E. M., van Belle, G., Deitrich, W., Clark, A. D., Jacka, M. E., & Kukull, W. A. (2004). The national Alzheimer’s coordinating center (NACC) database: An Alzheimer disease database. Alzheimer Disease & Associated Disorders, 18(4), 270–277.

Google Scholar 

Beekly, D. L., Ramos, E. M., Lee, W. W., Deitrich, W. D., Jacka, M. E., Wu, J., Hubbard, J. L., Koepsell, T. D., Morris, J. C., & Kukull, W. A. (2007). The National Alzheimer’s Coordinating Center (NACC) database: The uniform data set. Alzheimer Disease & Associated Disorders, 21(3), 249–258.

Article  Google Scholar 

Beheshti, I., Nugent, S., Potvin, O., & Duchesne, S. (2019). Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme. NeuroImage. Clinical, 24, 102063. https://doi.org/10.1016/j.nicl.2019.102063

Article  PubMed  PubMed Central  Google Scholar 

Besser, L. M., Kukull, W. A., Teylan, M. A., Bigio, E. H., Cairns, N. J., Kofler, J. K., ... & Nelson, P. T. (2018). The revised National Alzheimer’s Coordinating Center’s Neuropathology Form—available data and new analyses. Journal of Neuropathology & Experimental Neurology, 77(8), 717-726.

Biegon, A. (2021). Considering biological sex in traumatic brain injury. Frontiers in Neurology, 12, 576366. https://doi.org/10.3389/fneur.2021.576366

Article  PubMed  PubMed Central  Google Scholar 

Bigler, E. D. (2013). Traumatic brain injury, neuroimaging, and neurodegeneration. Frontiers in Human Neuroscience, 7, 395. https://doi.org/10.3389/fnhum.2013.00395

Article  PubMed  PubMed Central  Google Scholar 

Blinkouskaya, Y., Caçoilo, A., Gollamudi, T., Jalalian, S., & Weickenmeier, J. (2021). Brain aging mechanisms with mechanical manifestations. Mechanisms of Ageing and Development, 200, 111575. https://doi.org/10.1016/j.mad.2021.111575

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braun, M., Vaibhav, K., Saad, N. M., Fatima, S., Vender, J. R., Baban, B., Hoda, M. N., & Dhandapani, K. M. (2017). White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(1), 2614–2626. https://doi.org/10.1016/j.bbadis.2017.05.020

Article  CAS  PubMed  Google Scholar 

Chen, C.-C.V., Tung, Y.-Y., & Chang, C. (2011). A lifespan MRI evaluation of ventricular enlargement in normal aging mice. Neurobiology of Aging, 32(12), 2299–2307. https://doi.org/10.1016/j.neurobiolaging.2010.01.013

Article  PubMed  Google Scholar 

Cole, J. H., Leech, R., Sharp, D. J., Initiative ftAsDN. (2015). Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Annals of Neurology, 77(4), 571–581. https://doi.org/10.1002/ana.24367

Article  PubMed  PubMed Central  Google Scholar 

Cole, J. H., Marioni, R. E., Harris, S. E., & Deary, I. J. (2019). Brain age and other bodily ‘ages’: Implications for neuropsychiatry. Molecular Psychiatry, 24(2), 266–281. https://doi.org/10.1038/s41380-018-0098-1

Article  PubMed  Google Scholar 

Dartora, C., Marseglia, A., Mårtensson, G., Rukh, G., Dang, J., Muehlboeck, J.-S., Wahlund, L.-O., Moreno, R., Barroso, J., & Ferreira, D. (2024). A deep learning model for brain age prediction using minimally preprocessed T1w images as input. Frontiers in Aging Neuroscience, 15, 1303036.

Article  PubMed  PubMed Central  Google Scholar 

Durán, J. M., & Jongsma, K. R. (2021). Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI. Journal of Medical Ethics, 47(5), 329–335.

Google Scholar 

Eom, K. S., Kim, J. H., Yoon, S. H., Lee, S.-J., Park, K.-J., Ha, S.-K., Choi, J.-G., Jo, K.-W., Kim, J., Kang, S. H., & Kim, J.-H. (2021). Gender differences in adult traumatic brain injury according to the Glasgow coma scale: A multicenter descriptive study. Chinese Journal of Traumatology, 24(6), 333–343. https://doi.org/10.1016/j.cjtee.2021.06.004

Article  PubMed  PubMed Central  Google Scholar 

Farbota, K. D. M., Sodhi, A., Bendlin, B. B., McLaren, D. G., Xu, G., Rowley, H. A., & Johnson, S. C. (2012). Longitudinal Volumetric Changes Following Traumatic Brain Injury: A Tensor Based Morphometry Study. Journal of the International Neuropsychological Society : JINS, 18(6), 1006–1018. https://doi.org/10.1017/S1355617712000835

Article  PubMed  Google Scholar 

Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

Article  PubMed  Google Scholar 

Hacker, B. J., Imms, P. E., Dharani, A. M., Zhu, J., Chowdhury, N. F., Chaudhari, N. N., & Irimia, A. (2024). Identification and connectomic profiling of concussion using bayesian machine learning. Journal of Neurotrauma, 41(15–16), 1883–1900. https://doi.org/10.1089/neu.2023.0509

Article  PubMed  Google Scholar 

Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews. Neurology, 15(10), 565–581. https://doi.org/10.1038/s41582-019-0244-7

Article  PubMed  Google Scholar 

Hughes, E. J., Bond, J., Svrckova, P., Makropoulos, A., Ball, G., Sharp, D. J., Edwards, A. D., Hajnal, J. V., & Counsell, S. J. (2012). Regional changes in thalamic shape and volume with increasing age. NeuroImage, 63(3), 1134–1142. https://doi.org/10.1016/j.neuroimage.2012.07.043

Article  PubMed  Google Scholar 

Irimia, A., Goh, S.-Y.M., Torgerson, C. M., Vespa, P. M., & Van Horn, J. D. (2014). Structural and connectomic neuroimaging for the personalized study of longitudinal alterations in cortical shape, thickness, and connectivity after traumatic brain injury. Journal of Neurosurgical Sciences, 58(3), 129–144.

CAS  PubMed  PubMed Central  Google Scholar 

Irimia, A., Torgerson, C. M., Goh, S.-Y.M., & Van Horn, J. D. (2015). Statistical estimation of physiological brain age as a descriptor of senescence rate during adulthood. Brain Imaging and Behavior, 9(4), 678–689. https://doi.org/10.1007/s11682-014-9321-0

Article  PubMed  PubMed Central  Google Scholar 

Irimia, A., Ngo, V., Chaudhari, N. N., Zhang, F., Joshi, S. H., Penkova, A. N., O’Donnell, L. J., Sheikh-Bahaei, N., Zheng, X., & Chui, H. C. (2022). White matter degradation near cerebral microbleeds is associated with cognitive change after mild traumatic brain injury. Neurobiology of Aging, 120, 68–80. https://doi.org/10.1016/j.neurobiolaging.2022.08.010

Article  PubMed  PubMed Central  Google Scholar 

Jack, C. R., Petersen, R. C., Xu, Y., O’Brien, P. C., Smith, G. E., Ivnik, R. J., Boeve, B. F., Tangalos, E. G., & Kokmen, E. (2000). Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology, 55(4), 484–489. https://doi.org/10.1212/wnl.55.4.484

Article  PubMed  Google Scholar 

Jagoda, A. S., Bazarian, J. J., Bruns, J. J., Cantrill, S. V., Gean, A. D., Howard, P. K., Ghajar, J., Riggio, S., Wright, D. W., Wears, R. L., Bakshy, A., Burgess, P., Wald, M. M., & Whitson, R. R. (2008). Clinical Policy: Neuroimaging and decisionmaking in adult mild traumatic brain injury in the acute setting. Annals of Emergency Medicine, 52(6), 714–748. https://doi.org/10.1016/j.annemergmed.2008.08.021

Article  PubMed  Google Scholar 

Jin, W., Li, X., & Hamarneh, G. (2021). One Map Does Not Fit All: Evaluating Saliency Map Explanation on Multi-Modal Medical Images. https://doi.org/10.48550/ARXIV.2107.05047

Jobson, D. D., Hase, Y., Clarkson, A. N., & Kalaria, R. N. (2021). The role of the medial prefrontal cortex in cognition, ageing and dementia. Brain Communications, 3(3), fcab125. https://doi.org/10.1093/braincomms/fcab125

Article  PubMed  PubMed Central  Google Scholar 

Keles, A., Kul, O. A. H., & Bendechache, M. (2023). Saliency Maps as an Explainable AI Method in Medical Imaging: A Case Study on Brain Tumor Classification.

Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N., Araya, C., Yan, S., & Reblitz-Richardson, O. (2020). Captum: A unified and generic model interpretability library for PyTorch.

留言 (0)

沒有登入
gif