Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(s1):S3–8.
Article PubMed PubMed Central Google Scholar
Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis. 2020;6:15.
Article PubMed PubMed Central Google Scholar
Palermo G, Ceravolo R. Molecular imaging of the dopamine transporter. Cells. 2019;8(8).
Stowe R, Ives N, Clarke CE, Handley K, Furmston A, Deane K, et al. Meta-analysis of the comparative efficacy and safety of adjuvant treatment to levodopa in later Parkinson’s disease. Mov Disord. 2011;26(4):587–98.
Group PDMC, Gray R, Ives N, Rick C, Patel S, Gray A, et al. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. Lancet. 2014;384(9949):1196–205.
Gray R, Patel S, Ives N, Rick C, Woolley R, Muzerengi S, et al. Long-term effectiveness of adjuvant treatment with Catechol-O-Methyltransferase or monoamine oxidase B inhibitors compared with dopamine agonists among patients with Parkinson Disease uncontrolled by Levodopa Therapy: the PD MED Randomized Clinical Trial. JAMA Neurol. 2022;79(2):131–40.
Block CK, Patel M, Risk BB, Staikova E, Loring D, Esper CD, et al. Patients with cognitive impairment in Parkinson’s Disease Benefit from Deep Brain Stimulation: a case-control study. Mov Disord Clin Pract. 2023;10(3):382–91.
Article PubMed PubMed Central Google Scholar
Bucur M, Papagno C. Deep brain stimulation in Parkinson Disease: a Meta-analysis of the long-term neuropsychological outcomes. Neuropsychol Rev. 2023;33(2):307–46.
Abbasi Gharibkandi N, Hosseinimehr SJ. Radiotracers for imaging of Parkinson’s disease. Eur J Med Chem. 2019;166:75–89.
Article CAS PubMed Google Scholar
Fabiani G, Camargo CHF, Filho RM, Froehner GS, Teive HAG. Evaluation of Brain SPECT with (99m)Tc-TRODAT-1 in the Differential diagnosis of parkinsonism. Parkinsons Dis. 2022;2022:1746540.
PubMed PubMed Central Google Scholar
Lee JY, Martin-Bastida A, Murueta-Goyena A, Gabilondo I, Cuenca N, Piccini P, et al. Multimodal brain and retinal imaging of dopaminergic degeneration in Parkinson disease. Nat Rev Neurol. 2022;18(4):203–20.
Takahashi H, Watanabe Y, Tanaka H, Mochizuki H, Kato H, Hatazawa J, et al. Quantifying the severity of Parkinson Disease by Use of Dopaminergic Neuroimaging. AJR Am J Roentgenol. 2019;213(1):163–8.
Terashi H, Taguchi T, Ueta Y, Mitoma H, Aizawa H. Relationship between (123)I-FP-CIT-SPECT and motor severity in drug-naive patients with Parkinson’s disease. J Neurol Sci. 2021;426:117476.
Article CAS PubMed Google Scholar
Jiang H, Li A, Ji Z, Tian M, Zhang H. Role of Radiomics-based baseline PET/CT imaging in Lymphoma: diagnosis, prognosis, and Response Assessment. Mol Imaging Biol. 2022;24(4):537–49.
Lohmann P, Franceschi E, Vollmuth P, Dhermain F, Weller M, Preusser M, et al. Radiomics in neuro-oncological clinical trials. Lancet Digit Health. 2022;4(11):e841–9.
Article CAS PubMed Google Scholar
Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi-Bojd E, Lu L, et al. Improved prediction of outcome in Parkinson’s disease using radiomics analysis of longitudinal DAT SPECT images. Neuroimage Clin. 2017;16:539–44.
Article PubMed PubMed Central Google Scholar
Comte V, Schmutz H, Chardin D, Orlhac F, Darcourt J, Humbert O. Development and validation of a radiomic model for the diagnosis of dopaminergic denervation on [18F]FDOPA PET/CT. Eur J Nucl Med Mol Imaging. 2022;49(11):3787–96.
Article CAS PubMed PubMed Central Google Scholar
Hsu SY, Yeh LR, Chen TB, Du WC, Huang YH, Twan WH et al. Classification of the Multiple Stages of Parkinson’s Disease by a Deep Convolution Neural Network Based on (99m)Tc-TRODAT-1 SPECT Images. Molecules. 2020;25(20).
Thakur M, Kuresan H, Dhanalakshmi S, Lai KW, Wu X. Soft attention based DenseNet Model for Parkinson’s Disease classification using SPECT images. Front Aging Neurosci. 2022;14:908143.
Article PubMed PubMed Central Google Scholar
Budenkotte T, Apostolova I, Opfer R, Kruger J, Klutmann S, Buchert R. Automated identification of uncertain cases in deep learning-based classification of dopamine transporter SPECT to improve clinical utility and acceptance. Eur J Nucl Med Mol Imaging. 2023.
Ozsahin I, Sekeroglu B, Pwavodi PC, Mok GSP. High-accuracy automated diagnosis of Parkinson’s Disease. Curr Med Imaging. 2020;16(6):688–94.
Article CAS PubMed Google Scholar
Xia X, Gong J, Hao W, Yang T, Lin Y, Wang S, et al. Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to predict the invasiveness risk of Stage-I Lung adenocarcinomas in CT scan. Front Oncol. 2020;10:418.
Article PubMed PubMed Central Google Scholar
Jan YT, Tsai PS, Huang WH, Chou LY, Huang SC, Wang JZ, et al. Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors. Insights Imaging. 2023;14(1):68.
Article PubMed PubMed Central Google Scholar
Parkinson Progression Marker I. The Parkinson progression marker Initiative (PPMI). Prog Neurobiol. 2011;95(4):629–35.
Marek K, Chowdhury S, Siderowf A, Lasch S, Coffey CS, Caspell-Garcia C, et al. The Parkinson’s progression markers initiative (PPMI) - establishing a PD biomarker cohort. Ann Clin Transl Neurol. 2018;5(12):1460–77.
Article CAS PubMed PubMed Central Google Scholar
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage. 2006;31(3):1116–28.
Fang YH, Chiu SC, Lu CS, Yen TC, Weng YH. Fully automated quantification of the striatal uptake ratio of [(99m)Tc]-TRODAT with SPECT Imaging: evaluation of the diagnostic performance in Parkinson’s Disease and the temporal regression of Striatal Tracer Uptake. Biomed Res Int. 2015;2015:461625.
Article PubMed PubMed Central Google Scholar
Prashanth R, Roy SD, Mandal PK, Ghosh S. High-accuracy classification of Parkinson’s disease through shape analysis and surface fitting in 123I-Ioflupane SPECT imaging. IEEE J Biomed Health Inf. 2017;21(3):794–802.
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ, editors. Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.
Kocak B, Durmaz ES, Ates E, Kilickesmez O. Radiomics with artificial intelligence: a practical guide for beginners. Diagn Interv Radiol. 2019;25(6):485–95.
Article PubMed PubMed Central Google Scholar
Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenetics. 2019;11(1):123.
Article PubMed PubMed Central Google Scholar
Wang S, Liu Z, Rong Y, Zhou B, Bai Y, Wei W, et al. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Radiother Oncol. 2019;132:171–7.
Salmanpour MR, Shamsaei M, Hajianfar G, Soltanian-Zadeh H, Rahmim A. Longitudinal clustering analysis and prediction of Parkinson’s disease progression using radiomics and hybrid machine learning. Quant Imaging Med Surg. 2022;12(2):906–19.
Article PubMed PubMed Central Google Scholar
Tang J, Yang B, Adams MP, Shenkov NN, Klyuzhin IS, Fotouhi S, et al. Artificial neural network-based prediction of Outcome in Parkinson’s Disease patients using DaTscan SPECT Imaging features. Mol Imaging Biol. 2019;21(6):1165–73.
Article CAS PubMed Google Scholar
Rahmim A, Salimpour Y, Jain S, Blinder SA, Klyuzhin IS, Smith GS, et al. Application of texture analysis to DAT SPECT imaging: relationship to clinical assessments. Neuroimage Clin. 2016;12:e1–9.
留言 (0)