CD11b maintains West Nile virus replication through modulation of immune response in human neuroblastoma cells

Lafri I, Hachid A, Bitam I. West Nile virus in Algeria: a comprehensive overview. New Microbes New Infect. 2018;27:9–13. https://doi.org/10.1016/j.nmni.2018.10.002.

Article  PubMed  PubMed Central  Google Scholar 

Suthar MS, Diamond MS, Gale M Jr. West Nile virus infection and immunity. Nat Rev Microbiol. 2013;11(2):115–28. https://doi.org/10.1038/nrmicro2950.

Article  CAS  PubMed  Google Scholar 

Byas AD, Ebel GD. Comparative pathology of West Nile virus in humans and non-human animals. Pathogens. 2020;9(1):48. https://doi.org/10.3390/pathogens9010048.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajaiah P, Mayilsamy M, Kumar A. West Nile virus in India: an update on its genetic lineages. J Vector Borne Dis. 2023;60(3):225–37. https://doi.org/10.4103/0972-9062.374039.

Article  CAS  PubMed  Google Scholar 

Quicke KM, Suthar MS. The innate immune playbook for restricting West Nile virus infection. Viruses. 2013;5(11):2643–58. https://doi.org/10.3390/v5112643.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fulton CDM, Beasley DWC, Bente DA, Dineley KT. Long-term, West Nile virus-induced neurological changes: a comparison of patients and rodent models. Brain Behav Immun Health. 2020;7:100105. https://doi.org/10.1016/j.bbih.2020.100105.

Article  PubMed  PubMed Central  Google Scholar 

Daffis S, Suthar MS, Gale M Jr, Diamond MS. Measure and countermeasure: type I IFN (IFN-alpha/beta) antiviral response against West Nile virus. J Innate Immun. 2009;1(5):435–45. https://doi.org/10.1159/000226248.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zidovec-Lepej S, Vilibic-Cavlek T, Barbic L, Ilic M, Savic V, Tabain I, et al. Antiviral cytokine response in neuroinvasive and non-neuroinvasive West Nile virus infection. Viruses. 2021;13(2):342. https://doi.org/10.3390/v13020342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schittenhelm L, Hilkens CM, Morrison VL. β2 integrins as regulators of dendritic cell, monocyte, and macrophage function. Front Immunol. 2017;8:1866. https://doi.org/10.3389/fimmu.2017.01866.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan SQ, Khan I, Gupta V. CD11b activity modulates pathogenesis of lupus nephritis. Front Med (Lausanne). 2018;5:52. https://doi.org/10.3389/fmed.2018.00052.

Article  PubMed  Google Scholar 

Fagerholm SC, MacPherson M, James MJ, Sevier-Guy C, Lau CS. The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus. 2013;22(7):657–63. https://doi.org/10.1177/0961203313491851.

Article  CAS  PubMed  Google Scholar 

Rosetti F, Mayadas TN. The many faces of Mac-1 in autoimmune disease. Immunol Rev. 2016;269(1):175–93. https://doi.org/10.1111/imr.12373.

Article  CAS  PubMed  Google Scholar 

Caiado F, Carvalho T, Rosa I, Remédio L, Costa A, Matos J, et al. Bone marrow-derived CD11b + Jagged2 + cells promote epithelial-to-mesenchymal transition and metastasization in colorectal cancer. Cancer Res. 2013;73(14):4233–46. https://doi.org/10.1158/0008-5472.CAN-13-0085.

Article  CAS  PubMed  Google Scholar 

Lim SY, Gordon-Weeks A, Allen D, Kersemans V, Beech J, Smart S, et al. CD11b(+) myeloid cells support hepatic metastasis through down-regulation of angiopoietin-like 7 in cancer cells. Hepatology. 2015;62(2):521–33. https://doi.org/10.1002/hep.27838.

Article  CAS  PubMed  Google Scholar 

Hou L, Bao X, Zang C, Yang H, Sun F, Che Y, et al. Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a rho-dependent pathway. Redox Biol. 2018;14:600–8. https://doi.org/10.1016/j.redox.2017.11.010.

Article  CAS  PubMed  Google Scholar 

Stevanin M, Busso N, Chobaz V, Pigni M, Ghassem-Zadeh S, Zhang L, et al. CD11b regulates the Treg/Th17 balance in murine arthritis via IL-6. Eur J Immunol. 2017;47(4):637–45. https://doi.org/10.1002/eji.201646565.

Article  CAS  PubMed  Google Scholar 

Saed GM, Fletcher NM, Diamond MP, Morris RT, Gomez-Lopez N, Memaj I. Novel expression of CD11b in epithelial ovarian cancer: potential therapeutic target. Gynecol Oncol. 2018;148(3):567–75. https://doi.org/10.1016/j.ygyno.2017.12.018.

Article  CAS  PubMed  Google Scholar 

Plow EF, Wang Y, Simon DI. The search for new antithrombotic mechanisms and therapies that may spare hemostasis. Blood. 2018;131(17):1899–902. https://doi.org/10.1182/blood-2017-10-784074.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang WD, Tang HL, Peng HR, Ren RW, Zhao P, Zhao LJ. Inhibition of tick-borne encephalitis virus in cell cultures by Ribavirin. Front Microbiol. 2023;14:1182798. https://doi.org/10.3389/fmicb.2023.1182798.

Article  PubMed  PubMed Central  Google Scholar 

Li SH, Li XF, Zhao H, Jiang T, Deng YQ, Yu XD, et al. Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain III of Japanese encephalitis virus. Immunol Lett. 2011;138(2):156–60. https://doi.org/10.1016/j.imlet.2011.04.003.

Article  CAS  PubMed  Google Scholar 

Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, et al. Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. J Neuroinflammation. 2021;18(1):11. https://doi.org/10.1186/s12974-020-02060-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundhra S, Bondre VP. Higher replication potential of West Nile virus governs apoptosis induction in human neuroblastoma cells. Apoptosis. 2023;28(7–8):1113–27. https://doi.org/10.1007/s10495-023-01844-2.

Article  CAS  PubMed  Google Scholar 

Tang WD, Zhu WY, Tang HL, Zhao P, Zhao LJ. Engagement of AKT and ERK signaling pathways facilitates infection of human neuronal cells with West Nile virus. J Virus Erad. 2024;10(1):100368. https://doi.org/10.1016/j.jve.2024.100368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srivastava R, Ramakrishna C, Cantin E. Anti-inflammatory activity of intravenous immunoglobulins protects against West Nile virus encephalitis. J Gen Virol. 2015;96(Pt 6):1347–57. https://doi.org/10.1099/vir.0.000079.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, et al. Ly6c+ inflammatory monocytes are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205(10):2319–37. https://doi.org/10.1084/jem.20080421.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medigeshi GR, Lancaster AM, Hirsch AJ, Briese T, Lipkin WI, Defilippis V, et al. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol. 2007;81(20):10849–60. https://doi.org/10.1128/JVI.01151-07.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif