A Critical Review of Short Antimicrobial Peptides from Scorpion Venoms, Their Physicochemical Attributes, and Potential for the Development of New Drugs

Acevedo ICC, Silva PI Jr, Silva FD, Araújo I, Alves FL, Oliveira CS, Oliveira VX Jr (2019) IsCT-based analogs intending better biological activity. J Pept Sci 25(12):e3219. https://doi.org/10.1002/psc.3219

Article  CAS  PubMed  Google Scholar 

Adhyapak P, Srivatsav AT, Mishra M, Singh A, Narayan R, Kapoor S (2020) Dynamical organization of compositionally distinct inner and outer membrane lipids of mycobacteria. Biophys J 118(6):1279–1291. https://doi.org/10.1016/j.bpj.2020.01.027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguilera-Puga MDC, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F (2024) Accelerating the discovery and design of antimicrobial peptides with artificial intelligence. Methods Mol Biol 2714:329–352. https://doi.org/10.1007/978-1-0716-3441-7_18

Article  CAS  PubMed  Google Scholar 

Aisenbrey C, Marquette A, Bechinger B (2019) The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations. Adv Exp Med Biol 1117:33–64. https://doi.org/10.1007/978-981-13-3588-4_4

Article  CAS  PubMed  Google Scholar 

Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A (2022) Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther 22(7):895–909. https://doi.org/10.1080/14712598.2022.2088277

Article  CAS  PubMed  Google Scholar 

Al-Asmari AK, Alamri MA, Almasoudi AS, Abbasmanthiri R, Mahfoud M (2017) Evaluation of the in vitro antimicrobial activity of selected Saudi scorpion venoms tested against multidrug-resistant micro-organisms. J Glob Antimicrob Resist 10:14–18. https://doi.org/10.1016/j.jgar.2017.03.008

Article  PubMed  Google Scholar 

Almaaytah A, Albalas Q (2014) Scorpion venom peptides with no disulfide bridges: a review. Peptides 51:35–45. https://doi.org/10.1016/j.peptides.2013.10.021

Article  CAS  PubMed  Google Scholar 

Almaaytah A, Zhou M, Wang L, Chen T, Walker B, Shaw C (2012) Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides 35(2):291–299. https://doi.org/10.1016/j.peptides.2012.03.016

Article  CAS  PubMed  Google Scholar 

Almaaytah A, Tarazi S, Abu-Alhaijaa A, Altall Y, Alshar’i N, Bodoor K, Al-Balas Q (2014) Enhanced antimicrobial activity of AamAP1-Lysine, a novel synthetic peptide analog derived from the Scorpion venom peptide AamAP1. Pharmaceuticals (Basel) 7(5):502–516. https://doi.org/10.3390/ph7050502

Article  CAS  PubMed  Google Scholar 

Almaaytah A, Farajallah A, Abualhaijaa A, Al-Balas Q (2018) A3, a Scorpion venom derived peptide analogue with potent antimicrobial and potential antibiofilm activity against clinical isolates of multi-drug resistant gram positive bacteria. Molecules 23(7):1603. https://doi.org/10.3390/molecules23071603

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amand HL, Rydberg HA, Fornander LH, Lincoln P, Nordén B, Esbjörner EK (2012) Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans. Biochim Biophys Acta 1818(11):2669–78. https://doi.org/10.1016/j.bbamem.2012.06.00

Article  PubMed  Google Scholar 

Amorim-Carmo B, Daniele-Silva A, Parente AMS, Furtado AA, Carvalho E, Oliveira JWF, Santos ECG, Silva MS, Silva SRB, Silva-Júnior AA, Monteiro NK, Fernandes-Pedrosa MF (2019) Potent and broad-spectrum antimicrobial activity of analogs from the Scorpion peptide Stigmurin. Int J Mol Sci 20(3):623. https://doi.org/10.3390/ijms20030623

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andersen OS, Koeppe RE, Roux B (2005) Gramicidin channels. IEEE Trans Nanobiosci 4(1):10–20. https://doi.org/10.1109/tnb.2004.842470

Article  Google Scholar 

Armstrong KM, Baldwin RL (1993) Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges. Proc Natl Acad Sci USA 90(23):11337–11340. https://doi.org/10.1073/pnas.90.23.11337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arouri A, Dathe M, Blume A (2013) The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Biophys Chem 180–181:10–21. https://doi.org/10.1016/j.bpc.2013.05.003

Article  CAS  PubMed  Google Scholar 

Balatti GE, Domene C, Martini MF, Pickholz M (2020) Differential stability of aurein 1.2 pores in model membranes of two probiotic strains. J Chem Inf Model 60(10):5142–5152. https://doi.org/10.1021/acs.jcim.0c00855

Article  CAS  PubMed  Google Scholar 

Baldwin RL (2007) Energetics of protein folding. J Mol Biol 371(2):283–301. https://doi.org/10.1016/j.jmb.2007.05.078

Article  CAS  PubMed  Google Scholar 

Balleza D (2023) Peptide flexibility and the hydrophobic moment are determinants to evaluate the clinical potential of magainins. J Membr Biol 256(4–6):317–330. https://doi.org/10.1007/s00232-023-00286-w

Article  CAS  PubMed  Google Scholar 

Bandyopadhyay S, Junjie RL, Lim B, Sanjeev R, Xin WY, Yee CK, Hui Melodies SM, Yow N, Sivaraman J, Chatterjee C (2014) Solution structures and model membrane interactions of Ctriporin, an anti-methicillin-resistant Staphylococcus aureus peptide from scorpion venom. Biopolymers 101(12):1143–1153. https://doi.org/10.1002/bip.22519

Article  CAS  PubMed  Google Scholar 

Belokoneva OS, Villegas E, Corzo G, Dai L, Nakajima T (2003) The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers. Biochim Biophys Acta 1617(1–2):22–30. https://doi.org/10.1016/j.bbamem.2003.08.010

Article  CAS  PubMed  Google Scholar 

Belokoneva OS, Satake H, Mal’tseva EL, Pal’mina NP, Villegas E, Nakajima T, Corzo G (2004) Pore formation of phospholipid membranes by the action of two hemolytic arachnid peptides of different size. Biochim Biophys Acta 1664(2):182–188. https://doi.org/10.1016/j.bbamem.2004.05.007

Article  CAS  PubMed  Google Scholar 

Bermingham MA, Deol BS, Still JL (1970) Effect of streptomycin on lipid composition with particular reference to cyclic depsipeptide biosynthesis in Serratia marcescens and other micro-organisms. Biochem J 119(5):861–869. https://doi.org/10.1042/bj1190861

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bisbiroulas P, Psylou M, Iliopoulou I, Diakogiannis I, Berberi A, Mastronicolis SK (2011) Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride. Lett Appl Microbiol 52(3):275–280. https://doi.org/10.1111/j.1472-765X.2010.02995.x

Article  CAS  PubMed  Google Scholar 

Blaber M, Zhang XJ, Matthews BW (1993) Structural basis of amino acid alpha helix propensity. Science 260(5114):1637–1640. https://doi.org/10.1126/science.8503008

Article  CAS  PubMed  Google Scholar 

Boparai JK, Sharma PK (2019) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27(1):4–16. https://doi.org/10.2174/0929866526666190822165812

Article  CAS  Google Scholar 

Brown MF (2012) Curvature forces in membrane lipid-protein interactions. Biochemistry 51(49):9782–9795. https://doi.org/10.1021/bi301332v

Article  CAS  PubMed  Google Scholar 

Campagna S, Saint N, Molle G, Aumelas A (2007) Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry 46(7):1771–1778. https://doi.org/10.1021/bi0620297

Article  CAS  PubMed 

留言 (0)

沒有登入
gif