Acevedo ICC, Silva PI Jr, Silva FD, Araújo I, Alves FL, Oliveira CS, Oliveira VX Jr (2019) IsCT-based analogs intending better biological activity. J Pept Sci 25(12):e3219. https://doi.org/10.1002/psc.3219
Article CAS PubMed Google Scholar
Adhyapak P, Srivatsav AT, Mishra M, Singh A, Narayan R, Kapoor S (2020) Dynamical organization of compositionally distinct inner and outer membrane lipids of mycobacteria. Biophys J 118(6):1279–1291. https://doi.org/10.1016/j.bpj.2020.01.027
Article CAS PubMed PubMed Central Google Scholar
Aguilera-Puga MDC, Cancelarich NL, Marani MM, de la Fuente-Nunez C, Plisson F (2024) Accelerating the discovery and design of antimicrobial peptides with artificial intelligence. Methods Mol Biol 2714:329–352. https://doi.org/10.1007/978-1-0716-3441-7_18
Article CAS PubMed Google Scholar
Aisenbrey C, Marquette A, Bechinger B (2019) The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations. Adv Exp Med Biol 1117:33–64. https://doi.org/10.1007/978-981-13-3588-4_4
Article CAS PubMed Google Scholar
Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A (2022) Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther 22(7):895–909. https://doi.org/10.1080/14712598.2022.2088277
Article CAS PubMed Google Scholar
Al-Asmari AK, Alamri MA, Almasoudi AS, Abbasmanthiri R, Mahfoud M (2017) Evaluation of the in vitro antimicrobial activity of selected Saudi scorpion venoms tested against multidrug-resistant micro-organisms. J Glob Antimicrob Resist 10:14–18. https://doi.org/10.1016/j.jgar.2017.03.008
Almaaytah A, Albalas Q (2014) Scorpion venom peptides with no disulfide bridges: a review. Peptides 51:35–45. https://doi.org/10.1016/j.peptides.2013.10.021
Article CAS PubMed Google Scholar
Almaaytah A, Zhou M, Wang L, Chen T, Walker B, Shaw C (2012) Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides 35(2):291–299. https://doi.org/10.1016/j.peptides.2012.03.016
Article CAS PubMed Google Scholar
Almaaytah A, Tarazi S, Abu-Alhaijaa A, Altall Y, Alshar’i N, Bodoor K, Al-Balas Q (2014) Enhanced antimicrobial activity of AamAP1-Lysine, a novel synthetic peptide analog derived from the Scorpion venom peptide AamAP1. Pharmaceuticals (Basel) 7(5):502–516. https://doi.org/10.3390/ph7050502
Article CAS PubMed Google Scholar
Almaaytah A, Farajallah A, Abualhaijaa A, Al-Balas Q (2018) A3, a Scorpion venom derived peptide analogue with potent antimicrobial and potential antibiofilm activity against clinical isolates of multi-drug resistant gram positive bacteria. Molecules 23(7):1603. https://doi.org/10.3390/molecules23071603
Article CAS PubMed PubMed Central Google Scholar
Amand HL, Rydberg HA, Fornander LH, Lincoln P, Nordén B, Esbjörner EK (2012) Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans. Biochim Biophys Acta 1818(11):2669–78. https://doi.org/10.1016/j.bbamem.2012.06.00
Amorim-Carmo B, Daniele-Silva A, Parente AMS, Furtado AA, Carvalho E, Oliveira JWF, Santos ECG, Silva MS, Silva SRB, Silva-Júnior AA, Monteiro NK, Fernandes-Pedrosa MF (2019) Potent and broad-spectrum antimicrobial activity of analogs from the Scorpion peptide Stigmurin. Int J Mol Sci 20(3):623. https://doi.org/10.3390/ijms20030623
Article CAS PubMed PubMed Central Google Scholar
Andersen OS, Koeppe RE, Roux B (2005) Gramicidin channels. IEEE Trans Nanobiosci 4(1):10–20. https://doi.org/10.1109/tnb.2004.842470
Armstrong KM, Baldwin RL (1993) Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges. Proc Natl Acad Sci USA 90(23):11337–11340. https://doi.org/10.1073/pnas.90.23.11337
Article CAS PubMed PubMed Central Google Scholar
Arouri A, Dathe M, Blume A (2013) The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Biophys Chem 180–181:10–21. https://doi.org/10.1016/j.bpc.2013.05.003
Article CAS PubMed Google Scholar
Balatti GE, Domene C, Martini MF, Pickholz M (2020) Differential stability of aurein 1.2 pores in model membranes of two probiotic strains. J Chem Inf Model 60(10):5142–5152. https://doi.org/10.1021/acs.jcim.0c00855
Article CAS PubMed Google Scholar
Baldwin RL (2007) Energetics of protein folding. J Mol Biol 371(2):283–301. https://doi.org/10.1016/j.jmb.2007.05.078
Article CAS PubMed Google Scholar
Balleza D (2023) Peptide flexibility and the hydrophobic moment are determinants to evaluate the clinical potential of magainins. J Membr Biol 256(4–6):317–330. https://doi.org/10.1007/s00232-023-00286-w
Article CAS PubMed Google Scholar
Bandyopadhyay S, Junjie RL, Lim B, Sanjeev R, Xin WY, Yee CK, Hui Melodies SM, Yow N, Sivaraman J, Chatterjee C (2014) Solution structures and model membrane interactions of Ctriporin, an anti-methicillin-resistant Staphylococcus aureus peptide from scorpion venom. Biopolymers 101(12):1143–1153. https://doi.org/10.1002/bip.22519
Article CAS PubMed Google Scholar
Belokoneva OS, Villegas E, Corzo G, Dai L, Nakajima T (2003) The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers. Biochim Biophys Acta 1617(1–2):22–30. https://doi.org/10.1016/j.bbamem.2003.08.010
Article CAS PubMed Google Scholar
Belokoneva OS, Satake H, Mal’tseva EL, Pal’mina NP, Villegas E, Nakajima T, Corzo G (2004) Pore formation of phospholipid membranes by the action of two hemolytic arachnid peptides of different size. Biochim Biophys Acta 1664(2):182–188. https://doi.org/10.1016/j.bbamem.2004.05.007
Article CAS PubMed Google Scholar
Bermingham MA, Deol BS, Still JL (1970) Effect of streptomycin on lipid composition with particular reference to cyclic depsipeptide biosynthesis in Serratia marcescens and other micro-organisms. Biochem J 119(5):861–869. https://doi.org/10.1042/bj1190861
Article CAS PubMed PubMed Central Google Scholar
Bisbiroulas P, Psylou M, Iliopoulou I, Diakogiannis I, Berberi A, Mastronicolis SK (2011) Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride. Lett Appl Microbiol 52(3):275–280. https://doi.org/10.1111/j.1472-765X.2010.02995.x
Article CAS PubMed Google Scholar
Blaber M, Zhang XJ, Matthews BW (1993) Structural basis of amino acid alpha helix propensity. Science 260(5114):1637–1640. https://doi.org/10.1126/science.8503008
Article CAS PubMed Google Scholar
Boparai JK, Sharma PK (2019) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27(1):4–16. https://doi.org/10.2174/0929866526666190822165812
Brown MF (2012) Curvature forces in membrane lipid-protein interactions. Biochemistry 51(49):9782–9795. https://doi.org/10.1021/bi301332v
Article CAS PubMed Google Scholar
Campagna S, Saint N, Molle G, Aumelas A (2007) Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry 46(7):1771–1778. https://doi.org/10.1021/bi0620297
留言 (0)