Pharmacological targeting of the cancer epigenome

Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

Article  CAS  PubMed  Google Scholar 

Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article  CAS  PubMed  Google Scholar 

Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mittal, P. & Roberts, C. W. M. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).

Article  CAS  PubMed  Google Scholar 

Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conery, A. R., Rocnik, J. L. & Trojer, P. Small molecule targeting of chromatin writers in cancer. Nat. Chem. Biol. 18, 124–133 (2022).

Article  CAS  PubMed  Google Scholar 

Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyko, F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92 (2018).

Article  CAS  PubMed  Google Scholar 

Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a019505 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Whittaker, S. J. et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 4485–4491 (2010).

Article  CAS  PubMed  Google Scholar 

O’Connor, O. A. et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J. Clin. Oncol. 33, 2492–2499 (2015).

Article  PubMed  PubMed Central  Google Scholar 

San-Miguel, J. F. et al. Overall survival of patients with relapsed multiple myeloma treated with panobinostat or placebo plus bortezomib and dexamethasone (the PANORAMA 1 trial): a randomised, placebo-controlled, phase 3 trial. Lancet Haematol. 3, e506–e515 (2016).

Article  PubMed  Google Scholar 

Eckschlager, T., Plch, J., Stiborova, M. & Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18071414 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lechner, S. et al. Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nat. Chem. Biol. 18, 812–820 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Najm, F. J. et al. Chromatin complex dependencies reveal targeting opportunities in leukemia. Nat. Commun. 14, 448 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities. Nat. Struct. Mol. Biol. 30, 1160–1171 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, L., Ruiz, P., Ito, T. & Sellers, W. R. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell 39, 466–479 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

Article  CAS  PubMed  Google Scholar 

Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensel, T. et al. Targeting the EWS–ETS transcriptional program by BET bromodomain inhibition in Ewing sarcoma. Oncotarget 7, 1451–1463 (2016).

Article  PubMed  Google Scholar 

Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doroshow, D. B., Eder, J. P. & LoRusso, P. M. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 28, 1776–1787 (2017).

Article  CAS  PubMed  Google Scholar 

Piha-Paul, S. A. et al. Phase 1 study of molibresib (GSK525762), a bromodomain and extra-terminal domain protein inhibitor, in NUT carcinoma and other solid tumors. JNCI Cancer Spectr. 4, pkz093 (2020).

Article  PubMed  Google Scholar 

Stathis, A. et al. Clinical response of carcinomas harboring the BRD4–NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6, 492–500 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shorstova, T., Foulkes, W. D. & Witcher, M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br. J. Cancer 124, 1478–1490 (2021).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif