Li, Z. et al. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res. 50, D471–D479 (2022).
Article CAS PubMed Google Scholar
Trujillo, M. N. & Galligan, J. J. Reconsidering the role of protein glycation in disease. Nat. Chem. Biol. 19, 922–927 (2023).
Article CAS PubMed Google Scholar
Jaisson, S. & Gillery, P. Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clin. Chem. 56, 1401–1412 (2010).
Thornalley, P. J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol. Drug Interact. 23, 125–150 (2008).
Article PubMed PubMed Central Google Scholar
Hellwig, M. & Henle, T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew. Chem. Int. Ed. 53, 10316–10329 (2014).
deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).
Article CAS PubMed Google Scholar
Hermanson, G. T. Bioconjugate Techniques 3rd edn (Academic Press, 2013).
Kulkarni, R. A. et al. A chemoproteomic portrait of the oncometabolite fumarate. Nat. Chem. Biol. 15, 391–400 (2019).
Article CAS PubMed PubMed Central Google Scholar
Wagner, G. R. et al. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25, 823–837 (2017).
Article CAS PubMed PubMed Central Google Scholar
Rabbani, N. & Thornalley, P. J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42, 1133–1142 (2012).
Article CAS PubMed Google Scholar
Bunn, H. F. & Higgins, P. J. Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213, 222–224 (1981).
Article CAS PubMed Google Scholar
Hodge, J. E. Dehydrated foods, chemistry of browning reactions in model systems. J. Agric. Food Chem. 1, 928–943 (1953).
Moellering, R. E. & Cravatt, B. F. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341, 549–553 (2013).
Article CAS PubMed PubMed Central Google Scholar
Gaffney, D. O. et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem. Biol. 27, 206–213 (2020).
Article CAS PubMed Google Scholar
Maillard, L. C. Action des acides aminés sur les sucres; formation des mélanoïdines par voie méthodique. C. R. Hebd. Séances Acad. Sci. 154, 66–68 (1912).
Amadori, M. Atti Accad. Nazl. Lincei 2, 337–345 (1925).
Heyns, K. & Koch, W. [Notizen: über die Bildung eines Aminozuckers aus d-Fructose und Ammoniak]. Z. Naturforsch. 7, 486–488 (1952).
Allen, D. W., Schroeder, W. A. & Balog, J. Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J. Am. Chem. Soc. 80, 1628–1634 (1958).
Bunn, H. F., Haney, D. N., Gabbay, K. H. & Gallop, P. M. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem. Biophys. Res. Commun. 67, 103–109 (1975).
Article CAS PubMed Google Scholar
Monnier, V. M. & Cerami, A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211, 491–493 (1981).
Article CAS PubMed Google Scholar
Genuth, S. et al. Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes. Diabetes 64, 266–278 (2015).
Article CAS PubMed Google Scholar
Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R. & Baynes, J. W. Nε-(Carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34, 10872–10878 (1995).
Article CAS PubMed Google Scholar
Galligan, J. J. et al. Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. Proc. Natl Acad. Sci. USA 115, 9228–9233 (2018).
Article CAS PubMed PubMed Central Google Scholar
Arakawa, S. et al. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci. Rep. 10, 18774 (2020).
Article CAS PubMed PubMed Central Google Scholar
Thornalley, P. J. et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 375, 581–592 (2003).
Article CAS PubMed PubMed Central Google Scholar
Iijima, K., Murata, M., Takahara, H., Irie, S. & Fujimoto, D. Identification of N(omega)-carboxymethylarginine as a novel acid-labileadvanced glycation end product in collagen. Biochem. J. 347, 23–27 (2000).
Article CAS PubMed PubMed Central Google Scholar
Sjöberg, J. S. & Bulterijs, S. Characteristics, formation, and pathophysiology of glucosepane: a major protein cross-link. Rejuvenation Res. 12, 137–148 (2009).
Wang, T., Kartika, R. & Spiegel, D. A. Exploring post-translational arginine modification using chemically synthesized methylglyoxal hydroimidazolones. J. Am. Chem. Soc. 134, 8958–8967 (2012).
Article CAS PubMed PubMed Central Google Scholar
McEwen, J. M., Fraser, S., Guir, A. L. S., Dave, J. & Scheck, R. A. Synergistic sequence contributions bias glycation outcomes. Nat. Commun. 12, 3316 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sjoblom, N. M., Kelsey, M. M. G. & Scheck, R. A. A systematic study of selective protein glycation. Angew. Chem. Int. Ed. Engl. 57, 16077–16082 (2018).
Article CAS PubMed Google Scholar
Ahmed, M. U., Thorpe, S. R. & Baynes, J. W. Identification of Nε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 261, 4889–4894 (1986).
Article CAS PubMed Google Scholar
Ahmed, N. et al. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest. Ophthalmol. Vis. Sci. 44, 5287–5292 (2003).
Ahmed, N., Argirov, O. K., Minhas, H. S., Cordeiro, C. A. A. & Thornalley, P. J. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nε-carboxymethyl-lysine- and Nε-(1-carboxyethyl)lysine-modified albumin. Biochem. J. 364, 1–14 (2002).
留言 (0)