The chemical language of protein glycation

Li, Z. et al. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res. 50, D471–D479 (2022).

Article  CAS  PubMed  Google Scholar 

Trujillo, M. N. & Galligan, J. J. Reconsidering the role of protein glycation in disease. Nat. Chem. Biol. 19, 922–927 (2023).

Article  CAS  PubMed  Google Scholar 

Jaisson, S. & Gillery, P. Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clin. Chem. 56, 1401–1412 (2010).

Article  PubMed  Google Scholar 

Thornalley, P. J. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol. Drug Interact. 23, 125–150 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Hellwig, M. & Henle, T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew. Chem. Int. Ed. 53, 10316–10329 (2014).

Article  CAS  Google Scholar 

deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

Article  CAS  PubMed  Google Scholar 

Hermanson, G. T. Bioconjugate Techniques 3rd edn (Academic Press, 2013).

Kulkarni, R. A. et al. A chemoproteomic portrait of the oncometabolite fumarate. Nat. Chem. Biol. 15, 391–400 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagner, G. R. et al. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25, 823–837 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rabbani, N. & Thornalley, P. J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42, 1133–1142 (2012).

Article  CAS  PubMed  Google Scholar 

Bunn, H. F. & Higgins, P. J. Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213, 222–224 (1981).

Article  CAS  PubMed  Google Scholar 

Hodge, J. E. Dehydrated foods, chemistry of browning reactions in model systems. J. Agric. Food Chem. 1, 928–943 (1953).

Article  CAS  Google Scholar 

Moellering, R. E. & Cravatt, B. F. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341, 549–553 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaffney, D. O. et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem. Biol. 27, 206–213 (2020).

Article  CAS  PubMed  Google Scholar 

Maillard, L. C. Action des acides aminés sur les sucres; formation des mélanoïdines par voie méthodique. C. R. Hebd. Séances Acad. Sci. 154, 66–68 (1912).

CAS  Google Scholar 

Amadori, M. Atti Accad. Nazl. Lincei 2, 337–345 (1925).

Heyns, K. & Koch, W. [Notizen: über die Bildung eines Aminozuckers aus d-Fructose und Ammoniak]. Z. Naturforsch. 7, 486–488 (1952).

Article  Google Scholar 

Allen, D. W., Schroeder, W. A. & Balog, J. Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: a study of the effects of crystallization and chromatography on the heterogeneity and isoleucine content. J. Am. Chem. Soc. 80, 1628–1634 (1958).

Article  CAS  Google Scholar 

Bunn, H. F., Haney, D. N., Gabbay, K. H. & Gallop, P. M. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem. Biophys. Res. Commun. 67, 103–109 (1975).

Article  CAS  PubMed  Google Scholar 

Monnier, V. M. & Cerami, A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211, 491–493 (1981).

Article  CAS  PubMed  Google Scholar 

Genuth, S. et al. Skin advanced glycation end products glucosepane and methylglyoxal hydroimidazolone are independently associated with long-term microvascular complication progression of type 1 diabetes. Diabetes 64, 266–278 (2015).

Article  CAS  PubMed  Google Scholar 

Reddy, S., Bichler, J., Wells-Knecht, K. J., Thorpe, S. R. & Baynes, J. W. Nε-(Carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34, 10872–10878 (1995).

Article  CAS  PubMed  Google Scholar 

Galligan, J. J. et al. Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. Proc. Natl Acad. Sci. USA 115, 9228–9233 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arakawa, S. et al. Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci. Rep. 10, 18774 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thornalley, P. J. et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J. 375, 581–592 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iijima, K., Murata, M., Takahara, H., Irie, S. & Fujimoto, D. Identification of N(omega)-carboxymethylarginine as a novel acid-labileadvanced glycation end product in collagen. Biochem. J. 347, 23–27 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sjöberg, J. S. & Bulterijs, S. Characteristics, formation, and pathophysiology of glucosepane: a major protein cross-link. Rejuvenation Res. 12, 137–148 (2009).

Article  PubMed  Google Scholar 

Wang, T., Kartika, R. & Spiegel, D. A. Exploring post-translational arginine modification using chemically synthesized methylglyoxal hydroimidazolones. J. Am. Chem. Soc. 134, 8958–8967 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McEwen, J. M., Fraser, S., Guir, A. L. S., Dave, J. & Scheck, R. A. Synergistic sequence contributions bias glycation outcomes. Nat. Commun. 12, 3316 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sjoblom, N. M., Kelsey, M. M. G. & Scheck, R. A. A systematic study of selective protein glycation. Angew. Chem. Int. Ed. Engl. 57, 16077–16082 (2018).

Article  CAS  PubMed  Google Scholar 

Ahmed, M. U., Thorpe, S. R. & Baynes, J. W. Identification of Nε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 261, 4889–4894 (1986).

Article  CAS  PubMed  Google Scholar 

Ahmed, N. et al. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest. Ophthalmol. Vis. Sci. 44, 5287–5292 (2003).

Article  PubMed  Google Scholar 

Ahmed, N., Argirov, O. K., Minhas, H. S., Cordeiro, C. A. A. & Thornalley, P. J. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nε-carboxymethyl-lysine- and Nε-(1-carboxyethyl)lysine-modified albumin. Biochem. J. 364, 1–14 (2002).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif