Singha S., Kim D., Moon H., Wang T., Kim K.H., Shin Y.H., Jung J., Seo E., Lee S.J., Ahn K.H. 2015. Toward a selective, sensitive, fast-responsive, and biocompatible two-photon probe for hydrogen sulfide in live cells. Anal. Chem. 87 (2), 1188–1195.
Article CAS PubMed Google Scholar
Wang R. 2002. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J. 16 (13), 1792–1798.
Article CAS PubMed Google Scholar
Li Q., Lancaster J.R. 2013. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 35, 21–34.
Gusakova S.V., Kovalev I.V., Smaglii L.V., Birulina Yu.G., Nosarev A.V., Petrova I.V., Medvedev M.A., Orlov S.N., Reutov V.P. 2015. Gas signaling in mammalian cells. Uspekhi Fiziologicheskih Nauk (Rus.). 46 (4), 53–73.
Sukmansky O.I., Reutov V.P. 2016. Gas transmitters: The physiological role and participation in the pathogenesis of diseases. Uspekhi Fiziologicheskih Nauk (Rus.). 47 (3), 30–58.
Reutov V.P., Sorokina E.G, Sukmansky O.I. 2020. Cycles of nitric oxide (NO), superoxide radical anion (\(\bullet }_^\)) and hydrogen sulfur/sulfur dioxide (H2S/SO2) in mammals. Current Res. Biopolymers. 3, 1.
Wang R. 2010. Hydrogen sulfide: The third gasotransmitter in biology and medicine. Antioxid. Redox Signal. 12 (9), 1061–1064.
Article CAS PubMed Google Scholar
Kimura H. 2010. Hydrogen sulfide: From brain to gut. Antioxid. Redox Signal. 12 (9), 1111–1123.
Article CAS PubMed Google Scholar
Kimura H. 2020. Hydrogen sulfide signalling in the CNS—Comparison with NO. Br. J. Pharmacol. 177 (22), 5031–5045.
Article CAS PubMed PubMed Central Google Scholar
Kumar M., Sandhir R. 2018. Hydrogen sulfide in physiological and pathological mechanisms in brain. CNS Neurol. Disord. Drug Targets. 17 (9), 654–670.
Article CAS PubMed Google Scholar
Zhong H., Yu H., Chen J., Sun J., Guo L., Huang P., Zhong Y. 2020. Hydrogen sulfide and endoplasmic reticulum stress: A potential therapeutic target for central nervous system degeneration diseases. Front. Pharmacol. 11, 702. https://doi.org/10.3389/fphar.2020.00702
Article CAS PubMed PubMed Central Google Scholar
Salehpour M., Ashabi G., Kashef M., Marashi E.S., Ghasemi T. 2023. Aerobic training with naringin supplementation improved spatial cognition via H2S signaling pathway in Alzheimer’s disease model rats. Exp. Aging Res. 49 (4), 407–420.
Sun P., Chen H.C., Lu S., Hai J., Guo W., Jing Y.H., Wang B. 2022. Simultaneous sensing of H2S and ATP with a two-photon fluorescent probe in Alzheimer’s disease: Toward understanding why H2S regulates glutamate-induced ATP dysregulation. Anal. Chem. 94 (33), 11573–11581.
Article CAS PubMed Google Scholar
Wang S., Huang Y., Guan X. 2021. Fluorescent probes for live cell thiol detection. Molecules. 26 (12).
Chen S., Hou P., Wang J., Fu S., Liu L. 2018. A rapid and selective fluorescent probe with a large Stokes shift for the detection of hydrogen sulfide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 203, 258–262.
Article CAS PubMed Google Scholar
Chen X., Huang Z., Huang L., Shen Q., Yang N. Di, Pu C., Shao J., Li L., Yu C., Huang W. 2022. Small-molecule fluorescent probes based on covalent assembly strategy for chemoselective bioimaging. RSC Adv. 12 (3), 1393–1415.
Article CAS PubMed PubMed Central Google Scholar
Yan L., Gu Q.S., Jiang W.L., Tan M., Tan Z.K., Mao G.J., Xu F., Li C.Y. 2022. Near-infrared fluorescent probe with large stokes shift for imaging of hydrogen sulfide in tumor-bearing mice. Anal. Chem. 94 (14), 5514–5520.
Article CAS PubMed Google Scholar
Singha S., Kim D., Roy B., Sambasivan S., Moon H., Rao A.S., Kim J.Y., Joo T., Park J.W., Rhee Y.M., Wang T., Kim K.H., Shin Y.H., Jung J., Ahn K.H. 2015. A structural remedy toward bright dipolar fluorophores in aqueous media. Chem. Sci. 6 (7), 4335–4342.
Article CAS PubMed PubMed Central Google Scholar
Safiulina D., Kaasik A., Seppet E., Peet N., Zharkovsky A., Seppet E. 2004. Method for in situ detection of the mitochondrial function in neurons. J. Neurosci. Methods. 137 (1), 87–95.
Article CAS PubMed Google Scholar
Kolikova J., Afzalov R., Surin A., Lehesjoki A.E., Khiro-ug L. 2011. Deficient mitochondrial Ca2+ buffering in the Cln8(mnd) mouse model of neuronal ceroid lipofuscinosis. Cell Calcium. 50 (6), 491–501.
Article CAS PubMed Google Scholar
Bakaeva Z.V., Surin A.M., Lizunova N.V., Zotova A.E., Krasilnikova I.A., Fisenko A.P., Frolov D.A., Andreeva L.A., Myasoedov N.F., Pinelis V.G. 2020. Neuroprotective potential of peptides HFRWPGP (ACTH 6-9 PGP), KKRRPGP, and PyrRP in cultured cortical neurons at glutamate excitotoxicity. Doklady Ross. Akad. Nauk. Nauki o Zhizni (Rus.). 491 (1), 117–121.
Krasil’nikova I., Surin A., Sorokina E., Fisenko A., Boyarkin D., Balyasin M., Demchenko A., Pomytkin I., Pinelis V. 2019. Insulin protects cortical neurons against glutamate excitotoxicity. Front. Neurosci. 13, 1027. https://doi.org/10.3389/fnins.2019.01027
Article PubMed PubMed Central Google Scholar
Liang G.H., Adebiyi A., Leo M.D., McNally E.M., Leffler C.W., Jaggar J.H. 2011. Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels. Am. J. Physiol. Heart Circ. Physiol. 300 (6), H2088–H2095. https://doi.org/10.1152/ajpheart.01290.2010
Article CAS PubMed PubMed Central Google Scholar
Yoo D., Jupiter R.C., Pankey E.A., Reddy V.G., Edward J.A., Swan K.W., Peak T.C., Mostany R., Kadowitz P.J. 2015. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat. Am. J. Physiol. Heart Circ. Physiol. 309 (4), H605–H614.
Article CAS PubMed PubMed Central Google Scholar
Lakowitz J. 1986. Osnovi fluorescentnoy microskopii (Principals of fluorescence spectroscopy). Moscow: Mir, pp. 194–221.
Vaughan-Jones R.D., Spitzer K.W. 2002. Role of bicarbonate in the regulation of intracellular pH in the mammalian ventricular myocyte. Biochem. Cell Biol. 80 (5), 579–596.
Article CAS PubMed Google Scholar
Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 86 (2), 279–351.
Article CAS PubMed Google Scholar
Sharipov R.R., Krasilnikova I.A., Pinelis V.G., Gorbacheva L.R., Surin A.M. 2018. Study of the mechanism of neuron sensitization to the repeated glutamate challenge. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 12 (4), 369–381.
Kiedrowski L. 1999. N-methyl-D-aspartate excitotoxicity: Relationships among plasma membrane potential, Na+/Ca2+ exchange, mitochondrial Ca2+ overload, and cytoplasmic concentrations of Ca2+, H+, and K+. Mol. Pharmacol. 56 (3), 619–632.
Article CAS PubMed Google Scholar
Nicholls D.G., Budd S.L. 2000. Mitochondria and neuronal survival. Physiol. Rev. 80 (1), 315–360.
Article CAS PubMed Google Scholar
Bolshakov A.P., Mikhailova M.M., Szabadkai G., Pinelis V.G., Brustovetsky N., Rizzuto R., Khodorov B.I. 2008. Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation. Cell Calcium. 43 (6), 602–614.
Article CAS PubMed Google Scholar
Surin A.M., Krasilnikova I.A., Pinelis V.G., Khodorov B.I. 2014. Study of the relationship between glutamate-induced delayed calcium Ca2+ deregulation, mitochondrial depolarization and subsequent neuronal death. Patogenez (Rus.). 12 (4), 40–46.
Surin A.M., Gorbacheva L.R., Savinkova I.G., Sharipov R.R., Pinelis V.G. 2022. pH Changes in the mitochondrial matrix and cytosol under glutamate deregulation of Ca2+ homeostasis in cultured at hippocampal neurons. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 16 (3), 236–245.
留言 (0)