On the Feasibility of Using an Acedan-Based Fluorescent Probe to Monitor Hydrogen Sulfide in Primary Neuronal Cultures

Singha S., Kim D., Moon H., Wang T., Kim K.H., Shin Y.H., Jung J., Seo E., Lee S.J., Ahn K.H. 2015. Toward a selective, sensitive, fast-responsive, and biocompatible two-photon probe for hydrogen sulfide in live cells. Anal. Chem. 87 (2), 1188–1195.

Article  CAS  PubMed  Google Scholar 

Wang R. 2002. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J. 16 (13), 1792–1798.

Article  CAS  PubMed  Google Scholar 

Li Q., Lancaster J.R. 2013. Chemical foundations of hydrogen sulfide biology. Nitric Oxide. 35, 21–34.

Article  PubMed  Google Scholar 

Gusakova S.V., Kovalev I.V., Smaglii L.V., Birulina Yu.G., Nosarev A.V., Petrova I.V., Medvedev M.A., Orlov S.N., Reutov V.P. 2015. Gas signaling in mammalian cells. Uspekhi Fiziologicheskih Nauk (Rus.). 46 (4), 53–73.

CAS  Google Scholar 

Sukmansky O.I., Reutov V.P. 2016. Gas transmitters: The physiological role and participation in the pathogenesis of diseases. Uspekhi Fiziologicheskih Nauk (Rus.). 47 (3), 30–58.

CAS  Google Scholar 

Reutov V.P., Sorokina E.G, Sukmansky O.I. 2020. Cycles of nitric oxide (NO), superoxide radical anion (\(\bullet }_^\)) and hydrogen sulfur/sulfur dioxide (H2S/SO2) in mammals. Current Res. Biopolymers. 3, 1.

Google Scholar 

Wang R. 2010. Hydrogen sulfide: The third gasotransmitter in biology and medicine. Antioxid. Redox Signal. 12 (9), 1061–1064.

Article  CAS  PubMed  Google Scholar 

Kimura H. 2010. Hydrogen sulfide: From brain to gut. Antioxid. Redox Signal. 12 (9), 1111–1123.

Article  CAS  PubMed  Google Scholar 

Kimura H. 2020. Hydrogen sulfide signalling in the CNS—Comparison with NO. Br. J. Pharmacol. 177 (22), 5031–5045.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar M., Sandhir R. 2018. Hydrogen sulfide in physiological and pathological mechanisms in brain. CNS Neurol. Disord. Drug Targets. 17 (9), 654–670.

Article  CAS  PubMed  Google Scholar 

Zhong H., Yu H., Chen J., Sun J., Guo L., Huang P., Zhong Y. 2020. Hydrogen sulfide and endoplasmic reticulum stress: A potential therapeutic target for central nervous system degeneration diseases. Front. Pharmacol. 11, 702. https://doi.org/10.3389/fphar.2020.00702

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salehpour M., Ashabi G., Kashef M., Marashi E.S., Ghasemi T. 2023. Aerobic training with naringin supplementation improved spatial cognition via H2S signaling pathway in Alzheimer’s disease model rats. Exp. Aging Res. 49 (4), 407–420.

Article  PubMed  Google Scholar 

Sun P., Chen H.C., Lu S., Hai J., Guo W., Jing Y.H., Wang B. 2022. Simultaneous sensing of H2S and ATP with a two-photon fluorescent probe in Alzheimer’s disease: Toward understanding why H2S regulates glutamate-induced ATP dysregulation. Anal. Chem. 94 (33), 11573–11581.

Article  CAS  PubMed  Google Scholar 

Wang S., Huang Y., Guan X. 2021. Fluorescent probes for live cell thiol detection. Molecules. 26 (12).

Chen S., Hou P., Wang J., Fu S., Liu L. 2018. A rapid and selective fluorescent probe with a large Stokes shift for the detection of hydrogen sulfide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 203, 258–262.

Article  CAS  PubMed  Google Scholar 

Chen X., Huang Z., Huang L., Shen Q., Yang N. Di, Pu C., Shao J., Li L., Yu C., Huang W. 2022. Small-molecule fluorescent probes based on covalent assembly strategy for chemoselective bioimaging. RSC Adv. 12 (3), 1393–1415.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan L., Gu Q.S., Jiang W.L., Tan M., Tan Z.K., Mao G.J., Xu F., Li C.Y. 2022. Near-infrared fluorescent probe with large stokes shift for imaging of hydrogen sulfide in tumor-bearing mice. Anal. Chem. 94 (14), 5514–5520.

Article  CAS  PubMed  Google Scholar 

Singha S., Kim D., Roy B., Sambasivan S., Moon H., Rao A.S., Kim J.Y., Joo T., Park J.W., Rhee Y.M., Wang T., Kim K.H., Shin Y.H., Jung J., Ahn K.H. 2015. A structural remedy toward bright dipolar fluorophores in aqueous media. Chem. Sci. 6 (7), 4335–4342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Safiulina D., Kaasik A., Seppet E., Peet N., Zharkovsky A., Seppet E. 2004. Method for in situ detection of the mitochondrial function in neurons. J. Neurosci. Methods. 137 (1), 87–95.

Article  CAS  PubMed  Google Scholar 

Kolikova J., Afzalov R., Surin A., Lehesjoki A.E., Khiro-ug L. 2011. Deficient mitochondrial Ca2+ buffering in the Cln8(mnd) mouse model of neuronal ceroid lipofuscinosis. Cell Calcium. 50 (6), 491–501.

Article  CAS  PubMed  Google Scholar 

Bakaeva Z.V., Surin A.M., Lizunova N.V., Zotova A.E., Krasilnikova I.A., Fisenko A.P., Frolov D.A., Andreeva L.A., Myasoedov N.F., Pinelis V.G. 2020. Neuroprotective potential of peptides HFRWPGP (ACTH 6-9 PGP), KKRRPGP, and PyrRP in cultured cortical neurons at glutamate excitotoxicity. Doklady Ross. Akad. Nauk. Nauki o Zhizni (Rus.). 491 (1), 117–121.

Krasil’nikova I., Surin A., Sorokina E., Fisenko A., Boyarkin D., Balyasin M., Demchenko A., Pomytkin I., Pinelis V. 2019. Insulin protects cortical neurons against glutamate excitotoxicity. Front. Neurosci. 13, 1027. https://doi.org/10.3389/fnins.2019.01027

Article  PubMed  PubMed Central  Google Scholar 

Liang G.H., Adebiyi A., Leo M.D., McNally E.M., Leffler C.W., Jaggar J.H. 2011. Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels. Am. J. Physiol. Heart Circ. Physiol. 300 (6), H2088–H2095. https://doi.org/10.1152/ajpheart.01290.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo D., Jupiter R.C., Pankey E.A., Reddy V.G., Edward J.A., Swan K.W., Peak T.C., Mostany R., Kadowitz P.J. 2015. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat. Am. J. Physiol. Heart Circ. Physiol. 309 (4), H605–H614.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakowitz J. 1986. Osnovi fluorescentnoy microskopii (Principals of fluorescence spectroscopy). Moscow: Mir, pp. 194–221.

Vaughan-Jones R.D., Spitzer K.W. 2002. Role of bicarbonate in the regulation of intracellular pH in the mammalian ventricular myocyte. Biochem. Cell Biol. 80 (5), 579–596.

Article  CAS  PubMed  Google Scholar 

Khodorov B. 2004. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol. 86 (2), 279–351.

Article  CAS  PubMed  Google Scholar 

Sharipov R.R., Krasilnikova I.A., Pinelis V.G., Gorbacheva L.R., Surin A.M. 2018. Study of the mechanism of neuron sensitization to the repeated glutamate challenge. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 12 (4), 369–381.

Google Scholar 

Kiedrowski L. 1999. N-methyl-D-aspartate excitotoxicity: Relationships among plasma membrane potential, Na+/Ca2+ exchange, mitochondrial Ca2+ overload, and cytoplasmic concentrations of Ca2+, H+, and K+. Mol. Pharmacol. 56 (3), 619–632.

Article  CAS  PubMed  Google Scholar 

Nicholls D.G., Budd S.L. 2000. Mitochondria and neuronal survival. Physiol. Rev. 80 (1), 315–360.

Article  CAS  PubMed  Google Scholar 

Bolshakov A.P., Mikhailova M.M., Szabadkai G., Pinelis V.G., Brustovetsky N., Rizzuto R., Khodorov B.I. 2008. Measurements of mitochondrial pH in cultured cortical neurons clarify contribution of mitochondrial pore to the mechanism of glutamate-induced delayed Ca2+ deregulation. Cell Calcium. 43 (6), 602–614.

Article  CAS  PubMed  Google Scholar 

Surin A.M., Krasilnikova I.A., Pinelis V.G., Khodorov B.I. 2014. Study of the relationship between glutamate-induced delayed calcium Ca2+ deregulation, mitochondrial depolarization and subsequent neuronal death. Patogenez (Rus.). 12 (4), 40–46.

Google Scholar 

Surin A.M., Gorbacheva L.R., Savinkova I.G., Sharipov R.R., Pinelis V.G. 2022. pH Changes in the mitochondrial matrix and cytosol under glutamate deregulation of Ca2+ homeostasis in cultured at hippocampal neurons. Biochem. (Moscow), Suppl. Series A: Membr. Cell Biol. 16 (3), 236–245.

CAS  Google Scholar 

留言 (0)

沒有登入
gif