Establishing Optimal Control Cohorts for Phase 1 Trials: Retrospective Analysis of Clinical and Biological Outcomes in Neonates and Infants Undergoing Two-Ventricle Repair

Limperopoulos C, Majnemer A, Shevell MI et al (2001) Functional limitations in young children with congenital heart defects after cardiac surgery. Pediatrics 108(6):1325. https://doi.org/10.1542/peds.108.6.1325

Article  CAS  PubMed  Google Scholar 

Chen CY, Harrison T, Heathcock J (2015) Infants with complex congenital heart diseases show poor short-term memory in the mobile paradigm at 3 months of age. Infant Behav Dev 40:12–19. https://doi.org/10.1016/j.infbeh.2015.02.007

Article  PubMed  Google Scholar 

Cheatham SL, Carey H, Chisolm JL, Heathcock JC, Steward D (2015) Early results of neurodevelopment following hybrid stage I for hypoplastic left heart syndrome. Pediatr Cardiol 36(3):685–691. https://doi.org/10.1007/s00246-014-1065-5

Article  PubMed  Google Scholar 

Cassidy AR, White MT, DeMaso DR, Newburger JW, Bellinger DC (2015) Executive function in children and adolescents with critical cyanotic congenital heart disease. J Int Neuropsychol Soc 21(1):34–49. https://doi.org/10.1017/S1355617714001027

Article  PubMed  Google Scholar 

Hövels-Gürich HH, Konrad K, Skorzenski D, Herpertz-Dahlmann B, Messmer BJ, Seghaye MC (2007) Attentional dysfunction in children after corrective cardiac surgery in infancy. Ann Thorac Surg 83(4):1425–1430. https://doi.org/10.1016/j.athoracsur.2006.10.069

Article  PubMed  Google Scholar 

Marino BS, Lipkin PH, Newburger JW et al (2012) Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management. Circulation 126(9):1143–1172. https://doi.org/10.1161/CIR.0b013e318265ee8a

Article  PubMed  Google Scholar 

Kobayashi K, Liu C, Jonas RA, Ishibashi N (2021) The current status of neuroprotection in congenital heart disease. Children (Basel) 8(12):1116. https://doi.org/10.3390/children8121116

Article  PubMed  Google Scholar 

Dhari Z, Leonetti C, Lin S et al (2021) Impact of cardiopulmonary bypass on neurogenesis and cortical maturation. Ann Neurol 90(6):913–926. https://doi.org/10.1002/ana.26235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffman GM (2006) Neurologic monitoring on cardiopulmonary bypass: what are we obligated to do? Ann Thorac Surg 81(6):S2373–S2380. https://doi.org/10.1016/j.athoracsur.2006.02.076

Article  PubMed  Google Scholar 

van Velthoven CTJ, Kavelaars A, van Bel F, Heijnen CJ (2010) Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun 24(3):387–393. https://doi.org/10.1016/j.bbi.2009.10.017

Article  CAS  PubMed  Google Scholar 

Kobayashi K, Maeda T, Ayodeji M et al (2022) Dose effect of mesenchymal stromal cell delivery through cardiopulmonary bypass. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2022.07.035

Article  PubMed  Google Scholar 

Sarkislali K, Kobayashi K, Sarić N et al (2023) Mesenchymal stromal cell delivery via cardiopulmonary bypass provides neuroprotection in a juvenile porcine model. JACC Basic Transl Sci. https://doi.org/10.1016/J.JACBTS.2023.07.002

Article  PubMed  PubMed Central  Google Scholar 

Maeda T, Sarkislali K, Leonetti C et al (2020) Impact of mesenchymal stromal cell delivery through cardiopulmonary bypass on postnatal neurogenesis. Ann Thorac Surg 109:1274–1281. https://doi.org/10.1016/j.athoracsur

Article  PubMed  Google Scholar 

Maeda T, Briggs CM, Datar A et al (2021) Influence of administration of mesenchymal stromal cell on pediatric oxygenator performance and inflammatory response. JTCVS Open 5:99–107. https://doi.org/10.1016/j.xjon.2021.02.003

Article  PubMed  PubMed Central  Google Scholar 

Bollard C (2023) Mesenchymal Stromal Cells for Infants with Congenital Heart Disease (MedCaP). https://clinicaltrials.gov/ct2/show/NCT04236479 Accessed 28 Feb 2023

Kobayashi K, Higgins T, Liu C et al (2022) Defining the optimal historical control group for a phase 1 trial of mesenchymal stromal cell delivery through cardiopulmonary bypass in neonates and infants. Cardiol Young. https://doi.org/10.1017/s1047951122002633

Article  PubMed  Google Scholar 

Jacobs ML, O’Brien SM, Jacobs JP et al (2013) An empirically based tool for analyzing morbidity associated with operations for congenital heart disease. J Thorac Cardiovasc Surg 145(4):1046. https://doi.org/10.1016/j.jtcvs.2012.06.029

Article  PubMed  Google Scholar 

Wernovsky G, Wypij D, Jonas RA et al (1995) Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. Circulation 92(8):2226–2235. https://doi.org/10.1161/01.CIR.92.8.2226

Article  CAS  PubMed  Google Scholar 

Gaies MG, Gurney JG, Yen AH et al (2010) Vasoactive–inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass*. Pediatr Crit Care Med 11(2):234–238. https://doi.org/10.1097/PCC.0b013e3181b806fc

Article  PubMed  Google Scholar 

Pollack MM, Patel KM, Ruttimann UE (1996) PRISM III: an updated pediatric risk of mortality score. Crit Care Med 24(5):743–752. https://doi.org/10.1097/00003246-199605000-00004

Article  CAS  PubMed  Google Scholar 

Pollack MM, Holubkov R, Funai T et al (2015) Simultaneous prediction of new morbidity, mortality, and survival without new morbidity from pediatric intensive care. Crit Care Med. https://doi.org/10.1097/CCM.0000000000001081

Article  PubMed  PubMed Central  Google Scholar 

Gaies M, Cooper DS, Tabbutt S et al (2015) Collaborative quality improvement in the cardiac intensive care unit: development of the paediatric cardiac critical care consortium (PC4). Cardiol Young 25(5):951. https://doi.org/10.1017/S1047951114001450

Article  PubMed  Google Scholar 

Andropoulos DB, Hunter JV, Nelson DP et al (2010) Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. J Thorac Cardiovasc Surg 139(3):543–556. https://doi.org/10.1016/J.JTCVS.2009.08.022

Article  PubMed  Google Scholar 

Stegeman R, Feldmann M, Claessens NHP et al (2021) A uniform description of perioperative brain MRI findings in infants with severe congenital heart disease: results of a european collaboration. AJNR Am J Neuroradiol. https://doi.org/10.3174/AJNR.A7328

Article  PubMed  PubMed Central  Google Scholar 

McMurry TL, Hu Y, Blackstone EH, Kozower BD (2015) Propensity scores: methods, considerations, and applications in the journal of thoracic and cardiovascular surgery. J Thorac Cardiovasc Surg 150(1):14–19. https://doi.org/10.1016/J.JTCVS.2015.03.057

Article  PubMed  Google Scholar 

Alablani FJ, Chan HSA, Beishon L et al (2022) Paediatric brain MRI findings following congenital heart surgery: a systematic review. Arch Dis Child 107(9):818–825. https://doi.org/10.1136/ARCHDISCHILD-2021-323132

Article  PubMed  Google Scholar 

Claessens NHP, Chau V, de Vries LS et al (2019) Brain injury in infants with critical congenital heart disease: insights from two clinical cohorts with different practice approaches. J Pediatr 215:75-82.e2. https://doi.org/10.1016/j.jpeds.2019.07.017

Article  PubMed  Google Scholar 

Beca J, Gunn JK, Coleman L et al (2013) New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation 127(9):971–979. https://doi.org/10.1161/CIRCULATIONAHA.112.001089

Article  PubMed  Google Scholar 

Block AJ, McQuillen PS, Chau V et al (2010) Clinically silent preoperative brain injuries do not worsen with surgery in neonates with congenital heart disease. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2010.03.035

Article  PubMed  PubMed Central  Google Scholar 

Mahle WT, Tavani F, Zimmerman RA et al (2002) An MRI study of neurological injury before and after congenital heart surgery. Circulation 106:1–109

Article  Google Scholar 

留言 (0)

沒有登入
gif