Cieślak M, W A (2018) Role of purinergic receptors in the Alzheimer’s disease. Purinergic Sig 14(4):331–344
Rani S, D S, Khajuria A et al (2023) Advanced overview of biomarkers and techniques for early diagnosis of Alzheimer’s disease. Cell Mol Neurobiol 43(6):2491–2523
Se Thoe E, F A, Tang YQ, Chamyuang S, Chia AYY (2021) A review on advances of treatment modalities for Alzheimer’s disease. Life Sci 276:119129
Article CAS PubMed Google Scholar
Breijyeh Z, K R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):578
Calovi S, M-A P, Sperlágh B (2019) Microglia and the purinergic signaling system. Neuroscience 405:137–147
Article CAS PubMed Google Scholar
Trinh PNH, B J, Hellyer SD et al (2022) Adenosine receptor signalling in Alzheimer’s disease. Purinergic Sig 18(3):359–381
Sudduth TL, S F, Nelson PT et al (2013) Neuroinflammatory phenotype in early Alzheimer’s disease. Neurobiol Aging 34(4):1051–9
Article CAS PubMed Google Scholar
London A, C M, Schwartz M (2013) Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7:34
Article CAS PubMed PubMed Central Google Scholar
Chen Y, C M (2022) Two-faced behavior of microglia in Alzheimer’s disease. Nat Neurosci 25(1):3–4
Article CAS PubMed Google Scholar
Heneka MT, C MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405
Article CAS PubMed PubMed Central Google Scholar
V FD (2006) Purinergic signalling between axons and microglia. Novartis Found Symp 276:253–8 discussion 259-62, 275-81
IJzerman AP, J K, Müller CE et al (2022) International union of basic and clinical pharmacology. CXII: adenosine receptors: a further update. Pharmacol Rev 74(2):340–372
Article CAS PubMed PubMed Central Google Scholar
Illes P, U H, Chen JF, Tang Y (2023) Purinergic receptors in cognitive disturbances. Neurobiol Dis 185:106229
Article CAS PubMed Google Scholar
Schnurr M, T T, Shin A et al (2004) Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood 103(4):1391–7
Article CAS PubMed Google Scholar
B G (2006) Purinergic signalling–an overview. Novartis Found Symp 276:26–48 discussion 48-57, 275-81
W J (2002) Neuroprotective role of adenosine in the CNS. Pol J Pharmacol 54(4):313–26
Fang KM, Y C, Sun SH et al (2009) Microglial phagocytosis attenuated by short-term exposure to exogenous ATP through P2X receptor action. J Neurochem 111(5):1225–37
Article CAS PubMed Google Scholar
Liu CC, W N, Chen Y et al (2023) Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease. Nat Immunol 24(11):1854–1866
Article CAS PubMed Google Scholar
Färber K, K H (2006) Purinergic signaling and microglia. Pflugers Arch 452(5):615–21
Costenla AR, C R, de Mendonça A (2010) Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers Dis 20(Suppl 1):S25-34
Article CAS PubMed Google Scholar
Costenla AR, D M, Canas PM et al (2011) Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci 34(1):12–21
C JF (2014) Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol 119:257–307
Cao C, C J, Lin X et al (2009) Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J Alzheimers Dis 17(3):681–97
Article CAS PubMed PubMed Central Google Scholar
Arendash GW, C C (2010) Caffeine and coffee as therapeutics against Alzheimer’s disease. J Alzheimers Dis 20(Suppl 1):S117-26
Article CAS PubMed Google Scholar
Koscsó B, C B, Selmeczy Z et al (2012) Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process. J Immunol 188(1):445–53
Diaz-Hernandez JI, G-V R, León-Otegui M et al (2012) In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3β and secretases. Neurobiol Aging 33(8):1816–28
Article CAS PubMed Google Scholar
Sophocleous RA, O L, Sluyter R (2022) The P2X4 receptor: cellular and molecular characteristics of a promising neuroinflammatory target. Int J Mol Sci 23(10):5739
Article CAS PubMed PubMed Central Google Scholar
Montilla A, M G, Matute C et al (2020) Contribution of P2X4 receptors to CNS function and pathophysiology. Int J Mol Sci 21(15):5562
Article CAS PubMed PubMed Central Google Scholar
Vázquez-Villoldo N, D M, Martín A et al (2014) P2X4 receptors control the fate and survival of activated microglia. Glia 62(2):171–84
Kanellopoulos JM, A.-d.-S C, RüütelBoudinot S et al (2021) Structural and functional features of the P2X4 receptor: an immunological perspective. Front Immunol 25(12):645834
Varma R, C Y, Troncoso J et al (2009) Amyloid-beta induces a caspase-mediated cleavage of P2X4 to promote purinotoxicity. Neuromol Med 11(2):63–75
Duveau A, B E, Boué-Grabot E (2020) Implication of neuronal versus microglial P2X4 receptors in central nervous system disorders. Neurosci Bull 36(11):1327–1343
Article CAS PubMed PubMed Central Google Scholar
Hua J, G.d.P E, Linck N et al (2023) Microglial P2X4 receptors promote ApoE degradation and contribute to memory deficits in Alzheimer’s disease. Cell Mol Life Sci 80(5):138
Article CAS PubMed PubMed Central Google Scholar
Wang Y, G Z, Cao Y et al (2006) Lysosomal enzyme cathepsin B is involved in kainic acid-induced excitotoxicity in rat striatum. Brain Res 1071(1):245–9
留言 (0)