Role of adenosine in the pathophysiology and treatment of attention deficit hyperactivity disorder

Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA (2007) The worldwide prevalence of adhd: a systematic review and metaregression analysis. Am J Psychiatry. https://doi.org/10.1176/ajp.2007.164.6.942

Article  PubMed  Google Scholar 

Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. https://doi.org/10.1146/annurev-neuro-061010-113641

Article  PubMed  Google Scholar 

Paine TA, Neve RL, Carlezon WJ (2009) Attention deficits and hyperactivity following inhibition of camp-dependent protein kinase within the medial prefrontal cortex of rats. Neuropsychopharmacology. https://doi.org/10.1038/npp.2009.40

Article  PubMed  Google Scholar 

Howe MW, Dombeck DA (2016) Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature. https://doi.org/10.1038/nature18942

Article  PubMed  Google Scholar 

Molero Y, Gumpert C, Serlachius E, Lichtenstein P, Walum H, Johansson D, Anckarsater H, Westberg L, Eriksson E, Halldner L (2013) A study of the possible association between adenosine a2a receptor gene polymorphisms and attention-deficit hyperactivity disorder traits. Genes Brain Behav. https://doi.org/10.1111/gbb.12015

Article  PubMed  Google Scholar 

Kim GE, Kim HJ, Jin HJ (2023) The association between adenosine a(2a) receptor gene polymorphisms and attention deficit hyperactivity disorder in korean children. Gene. https://doi.org/10.1016/j.gene.2023.147503

Article  PubMed  Google Scholar 

Fusar-Poli P, Rubia K, Rossi G, Sartori G, Balottin U (2012) Striatal dopamine transporter alterations in adhd: pathophysiology or adaptation to psychostimulants? A meta-analysis. Am J Psychiatry. https://doi.org/10.1176/appi.ajp.2011.11060940

Huang ZL, Zhang Z, Qu WM (2014) Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol. https://doi.org/10.1016/B978-0-12-801022-8.00014-3

Article  PubMed  Google Scholar 

Ma L, Day-Cooney J, Benavides OJ, Muniak MA, Qin M, Ding JB, Mao T, Zhong H (2022) Locomotion activates pka through dopamine and adenosine in striatal neurons. Nature (London). https://doi.org/10.1038/s41586-022-05407-4

Article  PubMed  Google Scholar 

Conde SV, Gonzalez C, Batuca JR, Monteiro EC, Obeso A (2008) An antagonistic interaction between a2b adenosine and d2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J Neurochem. https://doi.org/10.1111/j.1471-4159.2008.05704.x

Article  PubMed  Google Scholar 

Pinho D, Quintas C, Sardo F, Cardoso TM, Queiroz G (2013) Purinergic modulation of norepinephrine release and uptake in rat brain cortex: contribution of glial cells. J Neurophysiol. https://doi.org/10.1152/jn.00708.2012

Article  PubMed  Google Scholar 

Allgaier C, Hertting G, Kugelgen OV (1987) The adenosine receptor-mediated inhibition of noradrenaline release possibly involves an n-protein and is increased by alpha 2-autoreceptor blockade. Br J Pharmacol. https://doi.org/10.1111/j.1476-5381.1987.tb08970.x

Article  PubMed  PubMed Central  Google Scholar 

Quintas C, Gonçalves J, Queiroz G (2023) Involvement of p2y1, p2y6, a1 and a2a receptors in the purinergic inhibition of nmda-evoked noradrenaline release in the rat brain cortex. Cells. https://doi.org/10.3390/cells12131690

Article  PubMed  PubMed Central  Google Scholar 

Ma X, Zhang Y, Wang L, Li N, Barkai E, Zhang X, Lin L, Xu J (2020) The firing of theta state-related septal cholinergic neurons disrupt hippocampal ripple oscillations via muscarinic receptors. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1568-19.2020

Article  PubMed  PubMed Central  Google Scholar 

Marzocchi GM, Oosterlaan J, Zuddas A, Cavolina P, Geurts H, Redigolo D, Vio C, Sergeant JA (2008) Contrasting deficits on executive functions between adhd and reading disabled children. J Child Psychol Psychiatry. https://doi.org/10.1111/j.1469-7610.2007.01859.x

Article  PubMed  Google Scholar 

Yamahashi Y, Lin YH, Mouri A, Iwanaga S, Kawashima K, Tokumoto Y, Watanabe Y, Faruk MO, Zhang X, Tsuboi D, Nakano T, Saito N, Nagai T, Yamada K, Kaibuchi K (2022) Phosphoproteomic of the acetylcholine pathway enables discovery of the pkc-beta-pix-rac1-pak cascade as a stimulatory signal for aversive learning. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01643-2

Article  PubMed  PubMed Central  Google Scholar 

Brown SJ, James S, Reddington M, Richardson PJ (1990) Both a1 and a2a purine receptors regulate striatal acetylcholine release. J Neurochem. https://doi.org/10.1111/j.1471-4159.1990.tb08817.x

Article  PubMed  Google Scholar 

Yang D, Ding C, Qi G, Feldmeyer D (2021) Cholinergic and adenosinergic modulation of synaptic release. Neuroscience. https://doi.org/10.1016/j.neuroscience.2020.06.006

Article  PubMed  PubMed Central  Google Scholar 

Van Dort CJ, Baghdoyan HA, Lydic R (2009) Adenosine a1 and a2a receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4111-08.2009

Article  PubMed  PubMed Central  Google Scholar 

Jin S, Fredholm BB (1997) Adenosine a2a receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/pl00004917

Article  PubMed  Google Scholar 

O’Regan MH, Simpson RE, Perkins LM, Phillis JW (1992) Adenosine receptor agonists inhibit the release of gamma-aminobutyric acid (gaba) from the ischemic rat cerebral cortex. Brain Res. https://doi.org/10.1016/0006-8993(92)90312-w

Article  PubMed  Google Scholar 

Morales-Figueroa GE, Rivera-Ramirez N, Gonzalez-Pantoja R, Escamilla-Sanchez J, Garcia-Hernandez U, Galvan EJ, Arias-Montano JA (2019) Adenosine a(2a) and histamine h(3) receptors interact at the camp/pka pathway to modulate depolarization-evoked [(3)h]-gaba release from rat striato-pallidal terminals. Purinergic Signal. https://doi.org/10.1007/s11302-018-9638-z

Article  PubMed  Google Scholar 

Gomez-Castro F, Zappettini S, Pressey JC, Silva CG, Russeau M, Gervasi N, Figueiredo M, Montmasson C, Renner M, Canas PM, Goncalves FQ, Alcada-Morais S, Szabo E, Rodrigues RJ, Agostinho P, Tome AR, Caillol G, Thoumine O, Nicol X, Leterrier C, Lujan R, Tyagarajan SK, Cunha RA, Esclapez M, Bernard C, Levi S (2021) Convergence of adenosine and gaba signaling for synapse stabilization during development. Science. https://doi.org/10.1126/science.abk2055

Article  PubMed  Google Scholar 

Lugo-Candelas C, Flegenheimer C, Mcdermott JM, Harvey E (2017) Emotional understanding, reactivity, and regulation in young children with adhd symptoms. J Abnorm Child Psychol. https://doi.org/10.1007/s10802-016-0244-7

Article  PubMed  Google Scholar 

Yuill N, Lyon J (2007) Selective difficulty in recognising facial expressions of emotion in boys with adhd. General performance impairments or specific problems in social cognition? Eur Child Adolesc Psychiatry. https://doi.org/10.1007/s00787-007-0612-5

Morrissette DA, Stahl SM (2014) Modulating the serotonin system in the treatment of major depressive disorder. Cns Spectr. https://doi.org/10.1017/S1092852914000613

Article  PubMed  Google Scholar 

Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients. https://doi.org/10.3390/nu8010056

Article  PubMed  Google Scholar 

Gorska AM, Golembiowska K (2015) The role of adenosine a1 and a2a receptors in the caffeine effect on mdma-induced da and 5-ht release in the mouse striatum. Neurotox Res. https://doi.org/10.1007/s12640-014-9501-0

Article  PubMed  Google Scholar 

Leem Y, Jang J, Park J, Kim H (2019) Exercise exerts an anxiolytic effect against repeated restraint stress through 5-ht2a-mediated suppression of the adenosine a2a receptor in the basolateral amygdala. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2019.06.005

Article  PubMed  Google Scholar 

Shrestha K, Venton BJ (2024) Transient adenosine modulates serotonin release indirectly in the dorsal raphe nuclei. Acs Chem Neurosci. https://doi.org/10.1021/acschemneuro.3c00687

Article  PubMed  Google Scholar 

Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, Hof PR, Shiromani PJ (2006) Adenosine and sleep homeostasis in the basal forebrain. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2181-06.2006

Article  PubMed  PubMed Central  Google Scholar 

Kalinchuk AV, Mccarley RW, Stenberg D, Porkka-Heiskanen T, Basheer R (2008) The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: lessons from 192 igg-saporin lesions. Neuros

留言 (0)

沒有登入
gif