Ando R, Suzuki Y (2019) Positive relationship between passive muscle stiffness and rapid force production. Hum Mov Sci 66:285–291. https://doi.org/10.1016/j.humov.2019.05.002
Ando R, Sato S, Hirata N, Tanimoto H, Imaizumi N, Suzuki Y, Hirata K, Akagi R (2021) Relationship between drop jump training-induced changes in passive plantar flexor stiffness and explosive performance. Front Physiol 12:777268. https://doi.org/10.3389/fphys.2021.777268
Article PubMed PubMed Central Google Scholar
Askling CM, Tengvar M, Saartok T, Thorstensson A (2007) Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med 35(2):197–206. https://doi.org/10.1177/0363546506294679
Avrillon S, Lacourpaille L, Hug F, Le Sant G, Frey A, Nordez A, Guilhem G (2020) Hamstring muscle elasticity differs in specialized high-performance athletes. Scand J Med Sci Sports 30(1):83–91. https://doi.org/10.1111/sms.13564
Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51(4):396–409
Bosquet L, Berryman N, Dupuy O, Mekary S, Arvisais D, Bherer L, Mujika I (2013) Effect of training cessation on muscular performance: a meta-analysis. Scand J Med Sci Sports 23(3):e140-149. https://doi.org/10.1111/sms.12047
Article CAS PubMed Google Scholar
Buckthorpe M, Wright S, Bruce-Low S, Nanni G, Sturdy T, Gross AS, Bowen L, Styles B, Della Villa S, Davison M, Gimpel M (2019) Recommendations for hamstring injury prevention in elite football: translating research into practice. Br J Sports Med 53(7):449–456. https://doi.org/10.1136/bjsports-2018-099616
Chodock E, Hahn J, Setlock CA, Lipps DB (2020) Identifying predictors of upper extremity muscle elasticity with healthy aging. J Biomech 103:109687. https://doi.org/10.1016/j.jbiomech.2020.109687
Article PubMed PubMed Central Google Scholar
Diamant J, Keller A, Baer E, Litt M, Arridge RG (1972) Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc R Soc Lond B Biol Sci 180(1060):293–315
Article CAS PubMed Google Scholar
Ducomps C, Mauriege P, Darche B, Combes S, Lebas F, Doutreloux JP (2003) Effects of jump training on passive mechanical stress and stiffness in rabbit skeletal muscle: role of collagen. Acta Physiol Scand 178(3):215–224. https://doi.org/10.1046/j.1365-201X.2003.01109.x
Article CAS PubMed Google Scholar
Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An KN (2013) Validation of shear wave elastography in skeletal muscle. J Biomech 46(14):2381–2387. https://doi.org/10.1016/j.jbiomech.2013.07.033
Ema R (2022) Association between elastography-assessed muscle mechanical properties and high-speed dynamic performance. Eur J Sport Sci 23(7):1233–1239. https://doi.org/10.1080/17461391.2022.2097129
Ema R, Wakahara T, Miyamoto N, Kanehisa H, Kawakami Y (2013) Inhomogeneous architectural changes of the quadriceps femoris induced by resistance training. Eur J Appl Physiol 113(11):2691–2703. https://doi.org/10.1007/s00421-013-2700-1
Franchi M, Fini M, Quaranta M, De Pasquale V, Raspanti M, Giavaresi G, Ottani V, Ruggeri A (2007a) Crimp morphology in relaxed and stretched rat achilles tendon. J Anat 210(1):1–7. https://doi.org/10.1111/j.1469-7580.2006.00666.x
Article PubMed PubMed Central Google Scholar
Franchi M, Trire A, Quaranta M, Orsini E, Ottani V (2007b) Collagen structure of tendon relates to function. ScientificWorldJournal 7:404–420. https://doi.org/10.1100/tsw.2007.92
Article CAS PubMed PubMed Central Google Scholar
Gajdosik RL (2001) Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech (bristol, Avon) 16(2):87–101
Article CAS PubMed Google Scholar
Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44(3):318–331. https://doi.org/10.1002/mus.22094
Article CAS PubMed PubMed Central Google Scholar
Green B, Bourne MN, van Dyk N, Pizzari T (2020) Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br J Sports Med 54(18):1081–1088. https://doi.org/10.1136/bjsports-2019-100983
Hirata K, Miyamoto-Mikami E, Kanehisa H, Miyamoto N (2016) Muscle-specific acute changes in passive stiffness of human triceps surae after stretching. Eur J Appl Physiol 116(5):911–918. https://doi.org/10.1007/s00421-016-3349-3
Hirata K, Kanehisa H, Miyamoto N (2017) Acute effect of static stretching on passive stiffness of the human gastrocnemius fascicle measured by ultrasound shear wave elastography. Eur J Appl Physiol 117(3):493–499. https://doi.org/10.1007/s00421-017-3550-z
Hirata K, Miyamoto-Mikami E, Kimura N, Miyamoto N (2018) No association between passive material property and cross-sectional area in human hamstring. J Phys Fitness Sports Med 7(1):35–40
Hirata K, Yamadera R, Akagi R (2020) Can static stretching reduce stiffness of the triceps surae in older men? Med Sci Sports Exerc 52(3):673–679. https://doi.org/10.1249/MSS.0000000000002186
Ichihashi N, Umegaki H, Ikezoe T, Nakamura M, Nishishita S, Fujita K, Umehara J, Nakao S, Ibuki S (2016) The effects of a 4-week static stretching programme on the individual muscles comprising the hamstrings. J Sports Sci 34(23):2155–2159. https://doi.org/10.1080/02640414.2016.1172725
Kawama R, Yanase K, Hojo T, Wakahara T (2022) Acute changes in passive stiffness of the individual hamstring muscles induced by resistance exercise: effects of contraction mode and range of motion. Eur J Appl Physiol 122(9):2071–2083. https://doi.org/10.1007/s00421-022-04976-6
Koulouris G, Connell DA, Brukner P, Schneider-Kolsky M (2007) Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J Sports Med 35(9):1500–1506. https://doi.org/10.1177/0363546507301258
Kumagai H, Miyamoto-Mikami E, Hirata K, Kikuchi N, Kamiya N, Hoshikawa S, Zempo H, Naito H, Miyamoto N, Fuku N (2019) ESR1 rs2234693 polymorphism is associated with muscle injury and muscle stiffness. Med Sci Sports Exerc 51(1):19–26. https://doi.org/10.1249/MSS.0000000000001750
Article CAS PubMed Google Scholar
Magnusson SP, Simonsen EB, Aagaard P, Boesen J, Johannsen F, Kjaer M (1997) Determinants of musculoskeletal flexibility: viscoelastic properties, cross-sectional area, EMG and stretch tolerance. Scand J Med Sci Sports 7(4):195–202
Article CAS PubMed Google Scholar
Maïsetti O, Hug F, Bouillard K, Nordez A (2012) Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J Biomech 45(6):978–984. https://doi.org/10.1016/j.jbiomech.2012.01.009
Marshall PW, Mannion J, Murphy BA (2009) Extensibility of the hamstrings is best explained by mechanical components of muscle contraction, not behavioral measures in individuals with chronic low back pain. PM R 1(8):709–718. https://doi.org/10.1016/j.pmrj.2009.04.009
Miyamoto N, Hirata K, Kanehisa H (2017) Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers. Scand J Med Sci Sports 27(1):99–106. https://doi.org/10.1111/sms.12620
留言 (0)