AKR1C4 regulates the sensitivity of colorectal cancer cells to chemotherapy through ferroptosis modulation

Cherri S, Oneda E, Zanotti L, Zaniboni A (2023) Optimizing the first-line treatment for metastatic colorectal cancer. Front Oncol 13:1246716. https://doi.org/10.3389/fonc.2023.1246716

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez Castells M et al (2023) The impact of clinical and translational research on the quality of life during the metastatic colorectal cancer patient journey. Front Oncol 13:1272561. https://doi.org/10.3389/fonc.2023.1272561

Article  PubMed  PubMed Central  Google Scholar 

Postwala H, Shah Y, Parekh PS, Chorawala MR (2023) Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Medical oncology (Northwood, London, England) 40, 334, https://doi.org/10.1007/s12032-023-02201-8

Alrushaid N, Khan FA, Al-Suhaimi E, Elaissari A (2023) Progress and perspectives in Colon Cancer Pathology, diagnosis, and treatments. Dis (Basel Switzerland) 11. https://doi.org/10.3390/diseases11040148

Gmeiner WH, Okechukwu CC (2023) Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects. Cancer drug Resist (Alhambra Calif) 6:257–272. https://doi.org/10.20517/cdr.2022.136

Article  CAS  Google Scholar 

Ma SC et al (2023) Novel strategies to reverse chemoresistance in colorectal cancer. Cancer Med 12:11073–11096. https://doi.org/10.1002/cam4.5594

Article  PubMed  PubMed Central  Google Scholar 

Zou Q et al (2022) Chemokines in progression, chemoresistance, diagnosis, and prognosis of colorectal cancer. Front Immunol 13:724139. https://doi.org/10.3389/fimmu.2022.724139

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282. https://doi.org/10.1038/s41580-020-00324-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conrad M, Pratt DA (2019) The chemical basis of ferroptosis. Nat Chem Biol 15:1137–1147. https://doi.org/10.1038/s41589-019-0408-1

Article  CAS  PubMed  Google Scholar 

Chen X, Li J, Kang R, Klionsky DJ, Tang D (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081. https://doi.org/10.1080/15548627.2020.1810918

Article  CAS  PubMed  Google Scholar 

Lei G, Zhuang L, Gan B (2022) Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22:381–396. https://doi.org/10.1038/s41568-022-00459-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang C, Liu X, Jin S, Chen Y, Guo R (2022) Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 21:47. https://doi.org/10.1186/s12943-022-01530-y

Article  PubMed  PubMed Central  Google Scholar 

Chakraborty S, Kaur S, Guha S, Batra SK (2012) The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta 1826:129–169. https://doi.org/10.1016/j.bbcan.2012.03.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhary N et al (2021) Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer 149:1495–1511. https://doi.org/10.1002/ijc.33711

Article  CAS  PubMed  Google Scholar 

Yang C, Zhang Y, Lin S, Liu Y, Li W (2021) Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin. Aging 13:13515–13534. https://doi.org/10.18632/aging.202774

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng CM et al (2017) Aldo-Keto reductase AKR1C1-AKR1C4: functions, regulation, and intervention for anti-cancer therapy. Front Pharmacol 8:119. https://doi.org/10.3389/fphar.2017.00119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davies NJ et al (2009) AKR1C isoforms represent a novel cellular target for jasmonates alongside their mitochondrial-mediated effects. Cancer Res 69:4769–4775. https://doi.org/10.1158/0008-5472.can-08-4533

Article  CAS  PubMed  Google Scholar 

Byrns MC, Jin Y, Penning TM (2011) Inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3): overview and structural insights. J Steroid Biochem Mol Biol 125:95–104

Article  CAS  PubMed  Google Scholar 

Penning TM, Byrns MC (2009) Steroid hormone transforming aldo-keto reductases and cancer. Ann N Y Acad Sci 1155:33–42. https://doi.org/10.1111/j.1749-6632.2009.03700.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gagliardi M et al (2019) Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis 10. https://doi.org/10.1038/s41419-019-2143-7

Huang F, Zheng Y, Li X, Luo H, Luo L (2021) Ferroptosis-related gene AKR1C1 predicts the prognosis of non-small cell lung cancer. Cancer Cell Int 21:567. https://doi.org/10.1186/s12935-021-02267-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian H et al (2016) High expression of AKR1C1 is associated with proliferation and migration of small-cell lung cancer cells. Lung Cancer (Auckland N Z) 7:53–61. https://doi.org/10.2147/lctt.S90694

Article  CAS  PubMed  Google Scholar 

Matsunaga T et al (2013) Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chemico-Biol Interact 202:234–242. https://doi.org/10.1016/j.cbi.2012.09.024

Article  CAS  Google Scholar 

Bortolozzi R et al (2018) AKR1C enzymes sustain therapy resistance in paediatric T-ALL. Br J Cancer 118:985–994. https://doi.org/10.1038/s41416-018-0014-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jamieson SM et al (2014) A novel fluorometric assay for aldo-keto reductase 1C3 predicts metabolic activation of the nitrogen mustard prodrug PR-104A in human leukaemia cells. Biochem Pharmacol 88:36–45. https://doi.org/10.1016/j.bcp.2013.12.019

Article  CAS  PubMed  Google Scholar 

Yee DJ, Balsanek V, Sames D (2004) New tools for molecular imaging of redox metabolism: development of a fluorogenic probe for 3 alpha-hydroxysteroid dehydrogenases. J Am Chem Soc 126:2282–2283. https://doi.org/10.1021/ja039799f

Article  CAS  PubMed  Google Scholar 

Yee DJ, Balsanek V, Bauman DR, Penning TM, Sames D (2006) Fluorogenic metabolic probes for direct activity readout of redox enzymes: selective measurement of human AKR1C2 in living cells. Proc Natl Acad Sci USA 103:13304–13309. https://doi.org/10.1073/pnas.0604672103

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinha BK et al (2023) Ferroptosis-Mediated Cell Death Induced by NCX4040, The Non-Steroidal Nitric Oxide Donor, in Human Colorectal Cancer Cells: Implications in Therapy. Cells 12, https://doi.org/10.3390/cells12121626

Han Y et al (2022) Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis 13:742. https://doi.org/10.1038/s41419-022-05192-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu M et al (2022) RIP3 blockade prevents immune-mediated hepatitis through a myeloid-derived suppressor cell dependent mechanism. Int J Biol Sci 18:199–213. https://doi.org/10.7150/ijbs.65402

Article  CAS 

留言 (0)

沒有登入
gif