SPEM1 Gene Mutation in a Case with Sperm Morphological Defects Leading to Male Infertility

Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22(6):1506–12.

Article  PubMed  Google Scholar 

Joshi M, Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod Biol Endocrinol. 2020;18(1):103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matzuk MM, Lamb DJ. Genetic dissection of mammalian fertility pathways. Nat Med. 2002;8(Suppl 10):S40. https://www.nature.com/articles/nm-fertilityS41.

De Braekeleer M, Nguyen MH, Morel F, Perrin A. Genetic aspects of monomorphic teratozoospermia: a review. J Assist Reprod Genet. 2015;32(4):615–23.

Article  PubMed  PubMed Central  Google Scholar 

Beurois J, Cazin C, Kherraf ZE, Martinez G, Celse T, Touré A, et al. Genetics of teratozoospermia: Back to the head. Best Pract Res Clin Endocrinol Metab. 2020;34(6): 101473.

Article  CAS  PubMed  Google Scholar 

Houston BJ, Riera-Escamilla A, Wyrwoll MJ, Salas-Huetos A, Xavier MJ, Nagirnaja L, et al. A systematic review of the validated monogenic causes of human male infertility: 2020 update and a discussion of emerging gene-disease relationships. Hum Reprod Update. 2021;28(1):15–29.

Article  PubMed  PubMed Central  Google Scholar 

Touré A, Martinez G, Kherraf ZE, Cazin C, Beurois J, Arnoult C, et al. The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet. 2021;140(1):21–42.

Article  PubMed  Google Scholar 

Gao F, Ye F, Zhang Q, Du Y, Xu W, Qi M, et al. Compound Heterozygous Mutations in FSIP2 Cause Morphological Abnormalities in Sperm Flagella Leading to Male Infertility. Andrologia. 2023;7(2023):1–9.

Article  Google Scholar 

Li W, He X, Yang S, Liu C, Wu H, Liu W, et al. Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. J Hum Genet. 2019;64(1):49–54.

Article  CAS  PubMed  Google Scholar 

Gao Y, Tian S, Sha Y, Zha X, Cheng H, Wang A, et al. Novel bi-allelic variants in DNAH2 cause severe asthenoteratozoospermia with multiple morphological abnormalities of the flagella. Reprod Biomed Online. 2021;42(5):963–72.

Article  CAS  PubMed  Google Scholar 

Liu C, Miyata H, Gao Y, Sha Y, Tang S, Xu Z, et al. Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. Am J Human Gen. 2020;107(2):330–41.

Article  CAS  Google Scholar 

Xu C, Tang D, Shao Z, Geng H, Gao Y, Li K, et al. Homozygous SPAG6 variants can induce nonsyndromic asthenoteratozoospermia with severe MMAF. Reprod Biol Endocrinol. 2022;20(1):41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni X, Wang J, Lv M, Liu C, Zhong Y, Tian S, et al. A novel homozygous mutation in WDR19 induces disorganization of microtubules in sperm flagella and nonsyndromic asthenoteratospermia. J Assist Reprod Genet. 2020;37(6):1431–9.

Article  PubMed  PubMed Central  Google Scholar 

Ma H, Zhang B, Khan A, Zhao D, Ma A, Zhou J, et al. Novel frameshift mutation in STK33 is associated with asthenozoospermia and multiple morphological abnormalities of the flagella. Hum Mol Genet. 2021;30(21):1977–84.

Article  CAS  PubMed  Google Scholar 

Zhang YT, Shen G, Zhuo LC, Yang X, Wang SY, Ruan TC, Jiang C, Wang X, Wang Y, Yang YH, Shen Y. Novel variations in TENT5D lead to teratozoospermia in infertile patients. Andrology. 2024. https://doi.org/10.1111/andr.13589.

Tan C, Meng L, Lv M, He X, Sha Y, Tang D, et al. Bi-allelic variants in DNHD1 cause flagellar axoneme defects and asthenoteratozoospermia in humans and mice. Am J Human Gen. 2022;109(1):157–71.

Article  CAS  Google Scholar 

Li L, Sha YW, Xu X, Mei LB, Qiu PP, Ji ZY, et al. DNAH6 is a novel candidate gene associated with sperm head anomaly. Andrologia. 2018;50(4): e12953.

Article  Google Scholar 

Li Y, Sha Y, Wang X, Ding L, Liu W, Ji Z, et al. DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. Clin Genet. 2019;95(5):590–600.

Article  CAS  PubMed  Google Scholar 

Baker MA, Naumovski N, Hetherington L, Weinberg A, Velkov T, Aitken RJ. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics. 2013;13(1):61–74.

Article  CAS  PubMed  Google Scholar 

Yeung CH, Tüttelmann F, Bergmann M, Nordhoff V, Vorona E, Cooper TG. Coiled sperm from infertile patients: characteristics, associated factors and biological implication. Hum Reprod. 2009;24(6):1288–95. https://doi.org/10.1093/humrep/dep017.

Mehta P, Vishvkarma R, Gupta S, Chattopadhyay N, Rajender S. Exome sequencing identified mutations in the WNT1 and COL1A2 genes in osteogenesis imperfecta cases. Mol Biol Rep. 2024;51(1):449. https://doi.org/10.1007/s11033-024-09326-7.

Grantham R. Amino Acid Difference Formula to Help Explain Protein Evolution. Science. 1974;185(4154):862–4.

Article  CAS  PubMed  Google Scholar 

Ng PC, Hanikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006;62(4):1125–32.

Article  CAS  PubMed  Google Scholar 

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7.20. https://doi.org/10.1002/0471142905.hg0720s760.

Hecht M, Bromberg Y, Rost B. Better prediction of functional effects for sequence variants. BMC Genomics. 2015;16(Suppl 8):S1.

Article  PubMed  PubMed Central  Google Scholar 

Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021;30(1):60–9. https://doi.org/10.1002/pro.3942.

Article  CAS  PubMed  Google Scholar 

1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

Article  Google Scholar 

Tse K, Sangodkar S, Bloch L, et al. The ALPHA Project: establishing consensus and prioritisation of global community recommendations to address major challenges in lupus diagnosis, care, treatment and research. Lupus Sci Med. 2021;8(1):e000433. https://doi.org/10.1136/lupus-2020-000433

Indian Genome Variation Consortium. The Indian Genome Variation database (IGVdb): a project overview. Hum Genet. 2005;118(1):1–11.

Article  Google Scholar 

Aksoy E, Aktan TM, Duman S, Cuce G. Assessment of Spermatozoa Morphology under Light Microscopy with Different Histologic Stains and Comparison of Morphometric Measurements. Int J Morphol. 2012;30(4):1544–50.

Article  Google Scholar 

Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R, Yan W. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci. 2007;104(16):6852–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashemi MS, Mozdarani H, Ghaedi K, Nasr-Esfahani MH. Among seven testis-specific molecular markers, SPEM1 appears to have a significant clinical value for prediction of sperm retrieval in azoospermic men. Andrology. 2018;6(6):890–5.

Article  CAS  PubMed  Google Scholar 

Li C, Shen C, Xiong W, et al. Spem2, a novel testis-enriched gene, is required for spermiogenesis and fertilization in mice. Cell Mol Life Sci. 2024;81(1):108. https://doi.org/10.1007/s00018-024-05147-w.

Bao J, Wu Q, Song R, Jie Z, Zheng H, Xu C, et al. RANBP17 is localized to the XY body of spermatocytes and interacts with SPEM1 on the manchette of elongating spermatids. Mol Cell Endocrinol. 2011;333(2):134–42.

Article  CAS  PubMed  Google Scholar 

Lehti MS, Sironen A. Formation and function of the manchette and flagellum during spermatogenesis. Reproduction. 2016;151(4):R43-54.

Article  CAS  PubMed  Google Scholar 

Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, et al. Microtubular Dysfunction and Male Infertility. World J Mens Health. 2020;38(1):9–23.

留言 (0)

沒有登入
gif