A multi-tissue de novo transcriptome assembly and relative gene expression of the vulnerable freshwater salmonid Thymallus ligericus

Andrews S (2010) FastQC: a quality control tool for high throughput sequence data.

Auer S, Hayes DS, Führer S et al (2022) Effects of cold and warm thermopeaking on drift and stranding of juvenile European grayling (Thymallus thymallus). River Res Appl. https://doi.org/10.1002/rra.4077

Article  Google Scholar 

Bašić T, Britton JR, Cove RJ et al (2018) Roles of discharge and temperature in recruitment of a cold-water fish, the European grayling Thymallus thymallus, near its southern range limit. Ecol Freshw Fish 27:940–951. https://doi.org/10.1111/eff.12405

Article  Google Scholar 

Bateman A, Martin MJ, O’Donovan C et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

Article  CAS  Google Scholar 

Berthelot C, Brunet F, Chalopin D et al (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. https://doi.org/10.1038/ncomms4657

Article  PubMed  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

Article  CAS  PubMed  Google Scholar 

Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:1–9. https://doi.org/10.1186/1471-2105-10-421

Article  CAS  Google Scholar 

Carruthers M, Yurchenko AA, Augley JJ et al (2018) De novo transcriptome assembly, annotation and comparison of four ecological and evolutionary model salmonid fish species. BMC Genomics 19:1–17. https://doi.org/10.1186/s12864-017-4379-x

Article  CAS  Google Scholar 

Christensen KA, Leong JS, Sakhrani D et al (2018a) Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PLoS ONE 13:1–15. https://doi.org/10.1371/journal.pone.0195461

Article  CAS  Google Scholar 

Christensen KA, Rondeau EB, Minkley DR et al (2018b) The arctic charr (Salvelinus alpinus) genome and transcriptome assembly. PLoS ONE 13:1–30. https://doi.org/10.1371/journal.pone.0204076

Article  CAS  Google Scholar 

Connon RE, D’Abronzo LS, Hostetter NJ et al (2012) Transcription profiling in environmental diagnostics: Health assessments in Columbia River basin steelhead (Oncorhynchus mykiss). Environ Sci Technol 46:6081–6087. https://doi.org/10.1021/es3005128

Article  CAS  PubMed  Google Scholar 

Connon RE, Jeffries KM, Komoroske LM et al (2018) The utility of transcriptomics in fish conservation. J Exp Biol. https://doi.org/10.1242/jeb.148833

Article  PubMed  Google Scholar 

Costa MJ, Duarte G, Segurado P, Branco P (2021) Major threats to European freshwater fish species. Sci Total Environ 797:149105. https://doi.org/10.1016/j.scitotenv.2021.149105

Article  CAS  PubMed  Google Scholar 

Dainat J, Hereñú D, Pucholt P (2020) AGAT: another Gff analysis toolkit to handle annotations in any GTF/GFF format. Zenodo. https://doi.org/10.5281/zenodo.4205393

Davidson NM, Oshlack A (2014) Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol 15:1–14. https://doi.org/10.1186/s13059-014-0410-6

Article  CAS  Google Scholar 

Deegan LA, Golden HE, Harvey CJ, Peterson BJ (1999) Influence of environmental variability on the growth of age-0 and adult arctic grayling. Trans Am Fish Soc 128:1163–1175. https://doi.org/10.1577/1548-8659(1999)128%3c1163:ioevot%3e2.0.co;2

Article  Google Scholar 

Finn RD, Clements J, Eddy SR (2011) HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res 39:29–37. https://doi.org/10.1093/nar/gkr367

Article  CAS  Google Scholar 

Gomes-dos-Santos A, Machado AM, Castro LFC et al (2022) The gill transcriptome of threatened European freshwater mussels. Sci Data 91(9):1–10. https://doi.org/10.1038/s41597-022-01613-x

Article  Google Scholar 

Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gundappa MK, To TH, Grønvold L et al (2022) Genome-wide reconstruction of rediploidization following autopolyploidization across one hundred million years of salmonid evolution. Mol Biol Evol. https://doi.org/10.1093/molbev/msab310

Article  PubMed  Google Scholar 

Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. https://doi.org/10.1038/nprot.2013.084

Article  CAS  PubMed  Google Scholar 

Hayes DS, Lautsch E, Unfer G et al (2021) Response of European grayling, Thymallus thymallus, to multiple stressors in hydropeaking rivers. J Environ Manag. https://doi.org/10.1016/j.jenvman.2021.1127375

Article  Google Scholar 

Heim KC, Wipfli MS, Whitman MS et al (2015) Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity. Environ Biol Fishes 99:49–65. https://doi.org/10.1007/s10641-015-0453-x

Article  Google Scholar 

Hughes NF, Reynolds JB (1994) Why do arctic grayling (Thymallus arcticus) get bigger as you go upstream? Can J Fish Aquat Sci. https://doi.org/10.1139/f94-216

Article  Google Scholar 

Kim D, Langmead B, Salzberg SL (2015) HISAT: A fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

Article  CAS  PubMed  PubMed Central  Google Scholar 

Labbe J, Devidal J, Albaric J (2023) combined impacts of climate change and water withdrawals on the water balance at the watershed scale — The case of the Allier alluvial Hydrosystem (France). Sustainability. https://doi.org/10.3390/su15043275

Article  Google Scholar 

Lan Y, Sun J, Xu T et al (2018) De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish. BMC Genomics 19:1–9. https://doi.org/10.1186/s12864-018-4720-z

Article  CAS  Google Scholar 

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Dewey CN (2014) RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. Bioinforma Impact Accurate Quantif Proteomic Genet Anal Res. https://doi.org/10.1201/b16589

Article  Google Scholar 

Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Sun S, Zhu J et al (2019) Transcriptome profiling and histology changes in juvenile blunt snout bream (Megalobrama amblycephala) liver tissue in response to acute thermal stress. Genomics 111:242–250. https://doi.org/10.1016/j.ygeno.2018.11.011

Article  CAS  PubMed  Google Scholar 

Luecke C, MacKinnon P (2008) Landscape effects on growth of age-0 arctic grayling in tundra streams. Trans Am Fish Soc 137:236–243. https://doi.org/10.1577/t05-039.1

Article  Google Scholar 

Machado AM, Almeida T, Mucientes G et al (2018) De novo assembly of the kidney and spleen transcriptomes of the cosmopolitan blue shark, Prionace glauca. Mar Genomics 37:50–53. https://doi.org/10.1016/j.margen.2017.11.009

Article  PubMed 

留言 (0)

沒有登入
gif