Identification of brain-enriched proteins in CSF as biomarkers of relapsing remitting multiple sclerosis

Vollmer TL, Nair KV, Williams IM, Alvarez E. Multiple sclerosis phenotypes as a Continuum: the role of neurologic Reserve. Neurol Clin Pract. 2021;11(4):342–51.

Article  PubMed  PubMed Central  Google Scholar 

Kuhlmann T, Moccia M, Coetzee T, Cohen JA, Correale J, Graves J, et al. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1):78–88.

Article  PubMed  Google Scholar 

Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.

Article  CAS  PubMed  Google Scholar 

Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14(10):577–89.

Article  CAS  PubMed  Google Scholar 

Barro C, Benkert P, Disanto G, Tsagkas C, Amann M, Naegelin Y, et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain. 2018;141(8):2382–91.

Article  PubMed  Google Scholar 

Kuhle J, Kropshofer H, Haering DA, Kundu U, Meinert R, Barro C, et al. Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology. 2019;92(10):e1007–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benkert P, Meier S, Schaedelin S, Manouchehrinia A, Yaldizli Ö, Maceski A, et al. Serum neurofilament light chain for individual prognostication of disease activity in people with multiple sclerosis: a retrospective modelling and validation study. Lancet Neurol. 2022;21(3):246–57.

Article  PubMed  Google Scholar 

Mouton-Barbosa E, Roux-Dalvai F, Bouyssié D, Berger F, Schmidt E, Righetti PG, et al. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol Cell Proteom. 2010;9(5):1006–21.

Article  CAS  Google Scholar 

Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta. 2001;310(2):173–86.

Article  CAS  PubMed  Google Scholar 

Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteom. 2016;13(1):11.

Article  Google Scholar 

Begcevic I, Brinc D, Dukic L, Simundic AM, Zavoreo I, Basic Kes V, et al. Targeted Mass Spectrometry-based assays for relative quantification of 30 brain-related proteins and their clinical applications. J Proteome Res. 2018;17(7):2282–92.

Article  CAS  PubMed  Google Scholar 

Batruch I, Lim B, Soosaipillai A, Brinc D, Fiala C, Diamandis EP. Mass Spectrometry-based assay for Targeting fifty-two proteins of Brain Origin in Cerebrospinal Fluid. J Proteome Res. 2020;19(8):3060–71.

Article  CAS  PubMed  Google Scholar 

Sohaei D, Thebault S, Avery LM, Batruch I, Lam B, Xu W, et al. Cerebrospinal fluid camk2a levels at baseline predict long-term progression in multiple sclerosis. Clin Proteom. 2023;20(1):33.

Article  CAS  Google Scholar 

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

R-PLEX human neurofilament light datasheet [Internet]. 2022. https://www.mesoscale.com/%7E/media/files/data%20sheets/ds-r-plex-human-neurofilament-l.pdf [Accessed 3 Mar 2024].

Binder JX, Pletscher-Frankild S, Tsafou K, Stolte C, O’Donoghue SI, Schneider R et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database. 2014;2014.

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

Article  CAS  PubMed  Google Scholar 

Ebers GC. Natural history of primary progressive multiple sclerosis. Mult Scler. 2004;10(Suppl 1):S8–13. discussion S-5.

Article  PubMed  Google Scholar 

Kister I, Chamot E, Salter AR, Cutter GR, Bacon TE, Herbert J. Disability in multiple sclerosis: a reference for patients and clinicians. Neurology. 2013;80(11):1018–24.

Article  PubMed  PubMed Central  Google Scholar 

Novakova L, Zetterberg H, Sundström P, Axelsson M, Khademi M, Gunnarsson M, et al. Monitoring disease activity in multiple sclerosis using serum neurofilament light protein. Neurology. 2017;89(22):2230–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Sloan Steven A, Clarke Laura E, Caneda C, Plaza Colton A, Blumenthal Paul D, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with Mouse. Neuron. 2016;89(1):37–53.

Article  CAS  PubMed  Google Scholar 

Axelsson M, Malmeström C, Nilsson S, Haghighi S, Rosengren L, Lycke J. Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol. 2011;258(5):882–8.

Article  CAS  PubMed  Google Scholar 

Stoop MP, Runia TF, Stingl C, van der Vuurst RM, Luider TM, Hintzen RQ. Decreased neuro-axonal proteins in CSF at First Attack of suspected multiple sclerosis. Proteom Clin Appl. 2017;11:11–2.

Article  Google Scholar 

Mosleth EF, Vedeler CA, Liland KH, McLeod A, Bringeland GH, Kroondijk L, et al. Cerebrospinal fluid proteome shows disrupted neuronal development in multiple sclerosis. Sci Rep. 2021;11(1):4087.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kroksveen AC, Aasebø E, Vethe H, Van Pesch V, Franciotta D, Teunissen CE, et al. Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM. J Proteom. 2013;78:312–25.

Article  CAS  Google Scholar 

Schutzer SE, Angel TE, Liu T, Schepmoes AA, Xie F, Bergquist J, et al. Gray matter is targeted in first-attack multiple sclerosis. PLoS ONE. 2013;8(9):e66117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhaunchak AS, Becker C, Schulman H, De Faria O Jr., Rajasekharan S, Banwell B, et al. Implication of perturbed axoglial apparatus in early pediatric multiple sclerosis. Ann Neurol. 2012;71(5):601–13.

Article  PubMed  Google Scholar 

Abdi F, Quinn JF, Jankovic J, McIntosh M, Leverenz JB, Peskind E, et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J Alzheimers Dis. 2006;9(3):293–348.

Article  CAS  PubMed  Google Scholar 

Fang Q, Strand A, Law W, Faca VM, Fitzgibbon MP, Hamel N, et al. Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol Cell Proteom. 2009;8(3):451–66.

Article  CAS  Google Scholar 

Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20(4):415–8.

Article  CAS  PubMed  Google Scholar 

Wassif WS, Sherwood RA, Amir A, Idowu B, Summers B, Leigh N, et al. Serum carnosinase activities in central nervous system disorders. Clin Chim Acta. 1994;225(1):57–64.

Article  CAS  PubMed  Google Scholar 

Borràs E, Cantó E, Choi M, Maria Villar L, Álvarez-Cermeño JC, Chiva C, et al. Protein-based classifier to Predict Conversion from clinically isolated syndrome to multiple Sclerosis*. Mol Cell Proteom. 2016;15(1):318–28.

Article  Google Scholar 

Cantó E, Tintoré M, Villar LM, Borrás E, Álvarez-Cermeño JC, Chiva C, et al. Validation of semaphorin 7A and ala-β-his-dipeptidase as biomarkers associated with the conversion from clinically isolated syndrome to multiple sclerosis. J Neuroinflamm. 2014;11(1):181.

Article  Google Scholar 

Bellia F, Vecchio G, Rizzarelli E. Carnosinases, their substrates and diseases. Molecules. 2014;19(2):2299–329.

留言 (0)

沒有登入
gif