Plant growth-promoting rhizobacteria (PGPR) native to African yam bean (Sphenostylis stenocarpa) enhance the early growth of three economically important legume species

Adewale, B., Daniel, A., & Onye, A. C. (2013). The nutritional potentials and possibilities in African yam bean for Africans. International Journal of AgriScience, 3, 8–19.

Google Scholar 

Albicoro, F. J., Draghi, W. O., Martini, M. C., Salas, M. E., Torres Tejerizo, G. A., Lozano, M. J., et al. (2021). The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti. Journal of Biotechnology, 329, 80–91. https://doi.org/10.1016/j.jbiotec.2021.01.006

Article  CAS  PubMed  Google Scholar 

Aloo, B. N., Tripathi, V., Makumba, B. A., & Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13, 1002448. https://doi.org/10.3389/fpls.2022.1002448

Article  PubMed  PubMed Central  Google Scholar 

Anand, R., Grayston, S., & Chanway, C. (2013). N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa. Microbial Ecology, 66(2), 369–374. https://doi.org/10.1007/s00248-013-0196-1

Article  CAS  PubMed  Google Scholar 

Becker, A., Overlöper, A., Schlüter, J.-P., Reinkensmeier, J., Robledo, M., Giegerich, R., et al. (2014). Riboregulation in plant-associated α-proteobacteria. RNA Biology, 11(5), 550–562. https://doi.org/10.4161/rna.29625

Article  PubMed  PubMed Central  Google Scholar 

Bitire, T. D., Abberton, M., Oyatomi, O., & Babalola, O. O. (2022). Effect of Bradyrhizobium japonicum strains and inorganic nitrogen fertilizer on the growth and yield of bambara groundnut (Vigna subterranea (L.) Verdc) accessions. Frontiers in Sustainable Food Systems, 6, 913239. https://doi.org/10.3389/fsufs.2022.913239

Article  Google Scholar 

Deng, Z.-S., Kong, Z.-Y., Zhang, B.-C., & Zhao, L.-F. (2020). Insights into non-symbiotic plant growth promotion bacteria associated with nodules of Sphaerophysa salsula growing in northwestern China. Archives of Microbiology, 202(2), 399–409. https://doi.org/10.1007/s00203-019-01752-7

Article  CAS  PubMed  Google Scholar 

Eastman, A. W., Weselowski, B., Nathoo, N., & Yuan, Z.-C. (2014). Complete genome sequence of Paenibacillus polymyxa CR1, a plant growth-promoting bacterium isolated from the corn rhizosphere exhibiting potential for biocontrol, biomass degradation, and biofuel production. Genome Announcements, 2, e01218-e1313. https://doi.org/10.1128/genomea.01218-13

Article  PubMed  PubMed Central  Google Scholar 

Esuola, C. O., & Olawuyi, O. J. (2023). African yam bean (Sphenostylis stenocarpa) intercrop enhances the growth of micro-propagated plantain (Musa paradisiaca) AAB Agbagba. Acta Horticulturae, 1367, 161–168.

Article  Google Scholar 

Fazeli Kakhki, S. F., Eskandari, M., Daneshian, J., & Anahid, S. (2020). Evaluation of plant growth bacteria (PGPR) on number of node leaves and capsules in sesame plant under field condition. Iranian Journal of Field Crops Research, 18(3), 279–295.

Google Scholar 

Fossou, R. K., Pothier, J. F., Zézé, A., & Perret, X. (2020). Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire. International Journal of Systematic and Evolutionary Microbiology, 70(2), 1421–1430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fwanyanga, F. M., Horn, L. N., Sibanda, T., & Reinhold-Hurek, B. (2022). Prospects of rhizobial inoculant technology on Bambara groundnut crop production and growth. Frontiers in Agronomy, 4, 1004771. https://doi.org/10.3389/fagro.2022.1004771

Article  Google Scholar 

Garrido-Oter, R., Nakano, R. T., Dombrowski, N., Ma, K.-W., McHardy, A. C., & Schulze-Lefert, P. (2018). Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host & Microbe, 24(1), 155-167.e5. https://doi.org/10.1016/j.chom.2018.06.006

Article  CAS  Google Scholar 

Grönemeyer, J. L., Kulkarni, A., Berkelmann, D., Hurek, T., & Reinhold-Hurek, B. (2014). Rhizobia indigenous to the Okavango region in sub-Saharan Africa: Diversity, adaptations, and host specificity. Applied and Environmental Microbiology, 80(23), 7244–7257. https://doi.org/10.1128/AEM.02417-14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeromela, A. M., Mikić, A. M., Vujić, S., Ćupina, B., Krstić, Đ, Dimitrijević, A., et al. (2017). Potential of legume–brassica intercrops for forage production and green manure: Encouragements from a temperate Southeast European environment. Frontiers in Plant Science, 8, 312. https://doi.org/10.3389/fpls.2017.00312

Article  PubMed  PubMed Central  Google Scholar 

Kumar, A., Patel, J. S., Meena, V. S., & Srivastava, R. (2019). Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 20, 101271. https://doi.org/10.1016/j.bcab.2019.101271

Article  Google Scholar 

Margaret, I., Becker, A., Blom, J., Bonilla, I., Goesmann, A., Göttfert, M., et al. (2011). Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. Journal of Biotechnology, 155(1), 11–19. https://doi.org/10.1016/j.jbiotec.2011.03.016

Article  CAS  PubMed  Google Scholar 

Mohammed, M., Jaiswal, S. K., & Dakora, F. D. (2019). Insights into the phylogeny, nodule function, and biogeographic distribution of microsymbionts nodulating the orphan Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] in African soils. Applied and Environmental Microbiology, 85(11), e00342-e419. https://doi.org/10.1128/AEM.00342-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ndungu, S. M., Messmer, M. M., Ziegler, D., Gamper, H. A., Mészáros, É., Thuita, M., et al. (2018). Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems & Environment, 261, 161–171. https://doi.org/10.1016/j.agee.2017.12.014

Article  Google Scholar 

Nicoud, Q., Lamouche, F., Chaumeret, A., Balliau, T., Le Bars, R., Bourge, M., et al. (2021). Bradyrhizobium diazoefficiens USDA110 nodulation of Aeschynomene afraspera is associated with atypical terminal bacteroid differentiation and suboptimal symbiotic efficiency. mSystems, 6, e01237-e1320. https://doi.org/10.1128/msystems.01237-20

Article  PubMed  PubMed Central  Google Scholar 

Oagile, O., Mmolotsi, R., Segwagwe, A., & Babili, T. P. (2012). African yam bean (Sphenostylis stenocarpa) nodulates promiscuously with rhizobium indigenous to soils of Botswana. Journal of Plant Studies, 1(2), 109. https://doi.org/10.5539/jps.v1n2p109

Article  Google Scholar 

Paliwal, R., Abberton, M., Faloye, B., & Olaniyi, O. (2020). Developing the role of legumes in West Africa under climate change. Current Opinion in Plant Biology, 56, 242–258. https://doi.org/10.1016/j.pbi.2020.05.002

Article  CAS  PubMed  Google Scholar 

Pathania, P., Rajta, A., Singh, P. C., & Bhatia, R. (2020). Role of plant growth-promoting bacteria in sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 30, 101842. https://doi.org/10.1016/j.bcab.2020.101842

Article  Google Scholar 

Paudel, D., Liu, F., Wang, L., Crook, M., Maya, S., Peng, Z., et al. (2020). Isolation, characterization, and complete genome sequence of a Bradyrhizobium strain Lb8 from nodules of peanut utilizing crack entry infection. Frontiers in Microbiology, 11, 93. https://doi.org/10.3389/fmicb.2020.00093

Article  PubMed  PubMed Central  Google Scholar 

Pule-Meulenberg, F. (2018). Solutions for food security in Africa through sustainable soil fertility management of ecosystems under climate change. Symbiosis, 75(3), 165–166. https://doi.org/10.1007/s13199-018-0553-4

Article  Google Scholar 

Pule-Meulenberg, F., Belane, A. K., Krasova-Wade, T., & Dakora, F. D. (2010). Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa. BMC Microbiology, 10(1), 89. https://doi.org/10.1186/1471-2180-10-89

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puozaa, D. K., Jaiswal, S. K., & Dakora, F. D. (2019). Phylogeny and distribution of Bradyrhizobium symbionts nodulating cowpea (Vigna unguiculata L. Walp) and their association with the physicochemical properties of acidic African soils. Systematic and Applied Microbiology, 42(3), 403–414. https://doi.org/10.1016/j.syapm.2019.02.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

R Core Team. (2021). R core team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http:-// www. R-project. org.

Rahmani, H. A., Räsänen, L. A., Afshari, M., & Lindström, K. (2011). Genetic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in soils of Iran. Applied Soil Ecology, 48(3), 287–293. https://doi.org/10.1016/j.apsoil.2011.04.010

Article  Google Scholar 

Rigi, F., Saberi, M., & Ebrahimi, M. (2023). Improved drought tolerance in Festuca ovina L. using plant growth promoting bacteria. Journal of Arid Land, 15(6), 740–755. https://doi.org/10.1007/s40333-023-0015-6

Article 

留言 (0)

沒有登入
gif