Next-generation data filtering in the genomics era

Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697–709 (2010).

Article  CAS  PubMed  Google Scholar 

Athanasopoulou, K., Boti, M. A., Adamopoulos, P. G., Skourou, P. C. & Scorilas, A. Third-generation sequencing: the spearhead towards the radical transformation of modern genomics. Life 12, 30 (2022).

Article  CAS  Google Scholar 

Fiedler, P. L. et al. Seizing the moment: the opportunity and relevance of the California Conservation Genomics Project to state and federal conservation policy. J. Hered. 113, 589–596 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, T., Chitnis, N., Monos, D. & Dinh, A. Next-generation sequencing technologies: an overview. Hum. Immunol. 82, 801–811 (2021).

Article  CAS  PubMed  Google Scholar 

Pompanon, F., Bonin, A., Bellemain, E. & Taberlet, P. Genotyping errors: causes, consequences and solutions. Nat. Rev. Genet. 6, 847–859 (2005). This review summarizes the sources of many common types of sequencing errors and provides some laboratory and bioinformatic ways to mitigate them.

Article  CAS  PubMed  Google Scholar 

Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Fountain, E. D., Pauli, J. N., Reid, B. N., Palsbøll, P. J. & Peery, M. Z. Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates. Mol. Ecol. Resour. 16, 966–978 (2016).

Article  CAS  PubMed  Google Scholar 

O’Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M. & Portnoy, D. S. These aren’t the loci you’re looking for: principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 27, 3193–3206 (2018). This helpful review discusses the effects of missing data, MAC and other filters on genotyping error rates for RADseq data.

Article  Google Scholar 

Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).

Article  CAS  PubMed  Google Scholar 

Ahrens, C. W. et al. Regarding the F-word: the effects of data filtering on inferred genotype–environment associations. Mol. Ecol. Resour. 21, 1460–1474 (2021).

Article  PubMed  Google Scholar 

Andrews, K. R. & Luikart, G. Recent novel approaches for population genomics data analysis. Mol. Ecol. 23, 1661–1667 (2014).

Article  PubMed  Google Scholar 

Shafer, A. B. A. et al. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol. Evol. 8, 907–917 (2017). This study demonstrates the effects of different filtering and alignment choices on several downstream statistics and demographic reconstruction in RADseq data.

Article  Google Scholar 

Larson, W. A., Isermann, D. A. & Feiner, Z. S. Incomplete bioinformatic filtering and inadequate age and growth analysis lead to an incorrect inference of harvested-induced changes. Evol. Appl. 14, 278–289 (2021).

Article  CAS  PubMed  Google Scholar 

Nazareno, A. G. & Knowles, L. L. There is no ‘rule of thumb’: genomic filter settings for a small plant population to obtain unbiased gene flow estimates. Front. Plant Sci. 12, 677009 (2021). This comprehensive analysis of empirical data demonstrates how missing data and MAF thresholds affect estimates of gene flow.

Article  PubMed  PubMed Central  Google Scholar 

Sethuraman, A. et al. Continued misuse of multiple testing correction methods in population genetics — a wake-up call? Mol. Ecol. Resour. 19, 23–26 (2019).

Article  PubMed  Google Scholar 

Allendorf, F. W. et al. Conservation and the Genomics of Populations (Oxford Univ. Press, 2022).

Gervais, L. et al. RAD-sequencing for estimating genomic relatedness matrix-based heritability in the wild: a case study in roe deer. Mol. Ecol. Resour. 19, 1205–1217 (2019).

Article  CAS  PubMed  Google Scholar 

Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory (Scientific Publishers, 2017).

Van Etten, J., Stephens, T. G. & Bhattacharya, D. A k-mer-based approach for phylogenetic classification of taxa in environmental genomic data. Syst. Biol. 72, 1101–1118 (2023).

Article  CAS  PubMed  Google Scholar 

Todd, E. V., Black, M. A. & Gemmell, N. J. The power and promise of RNA-seq in ecology and evolution. Mol. Ecol. 25, 1224–1241 (2016).

Article  CAS  PubMed  Google Scholar 

Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 17, 13 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Olofsson, D., Preußner, M., Kowar, A., Heyd, F. & Neumann, A. One pipeline to predict them all? On the prediction of alternative splicing from RNA-seq data. Biochem. Biophys. Res. Commun. 653, 31–37 (2023).

Article  CAS  PubMed  Google Scholar 

Upton, R. N. et al. Design, execution, and interpretation of plant RNA-seq analyses. Front. Plant Sci. 14, 1135455 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Rehn, J. et al. RaScALL: rapid (Ra) screening (Sc) of RNA-seq data for prognostically significant genomic alterations in acute lymphoblastic leukaemia (ALL). PLOS Genet. 18, e1010300 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boshuizen, H. C. & te Beest, D. E. Pitfalls in the statistical analysis of microbiome amplicon sequencing data. Mol. Ecol. Resour. 23, 539–548 (2023).

Article  PubMed  Google Scholar 

Combrink, L. et al. Best practice for wildlife gut microbiome research: a comprehensive review of methodology for 16S rRNA gene investigations. Front. Microbiol. 14, 1092216 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Cheng, Z. et al. Transcriptomic analysis of circulating leukocytes obtained during the recovery from clinical mastitis caused by Escherichia coli in Holstein dairy cows. Animals 12, 2146 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Yang, L. & Chen, J. Benchmarking differential abundance analysis methods for correlated microbiome sequencing data. Brief. Bioinformatics 24, bbac607 (2023).

Article  PubMed  Google Scholar 

Patin, N. V. & Goodwin, K. D. Capturing marine microbiomes and environmental DNA: a field sampling guide. Front. Microbiol. 13, 1026596 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).

Google Scholar 

Deyneko, I. V. et al. Modeling and cleaning RNA-seq data significantly improve detection of differentially expressed genes. BMC Bioinformatics 23, 488 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giusti, A., Malloggi, C., Magagna, G., Filipello, V. & Armani, A. Is the metabarcoding ripe enough to be applied to the authentication of foodstuff of animal origin? A systematic review. Compr. Rev. Food Sci. Food Saf. 23, 1–21 (2024).

Article  Google Scholar 

da Fonseca, R. R. et al. Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar. Genomics 30, 3–13 (2016).

Article  PubMed  Google Scholar 

Zhao, M. et al. Exploring conflicts in whole genome phylogenetics: a case study within manakins (Aves: Pipridae). Syst. Biol. 72, 161–178 (2023).

Article  CAS  PubMed  Google Scholar 

Koboldt, D. C. Best practices for variant calling in clinical sequencing. Genome Med 12, 91 (2020).

Article 

留言 (0)

沒有登入
gif