Differential Effects of LOX-1 Inhibition on Aortic Structure and Posterior Cerebral Artery Structure and Function in an Experimental Model of Preeclampsia

Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol. 1989;161:1200–4. https://doi.org/10.1016/0002-9378(89)90665-0.

Myatt L, Webster RP. Vascular biology of preeclampsia. J Thromb Haemost. 2009;7:375–84. https://doi.org/10.1111/j.1538-7836.2008.03259.x.

Article  CAS  PubMed  Google Scholar 

VanWijk MJ, Kublickiene K, Boer K, VanBavel E. Vascular function in preeclampsia. Cardiovasc Res. 2000;47:38–48. https://doi.org/10.1016/S0008-6363(00)00087-0.

Article  CAS  PubMed  Google Scholar 

Pàez O, Alfie J, Gorosito M, Puleio P, De Maria M, Prieto N, et al. Parallel Decrease in arterial distensibility and in endothelium-dependent dilatation in young women with a history of pre-eclampsia. Clin Exp Hypertens. 2009;31:544–52. https://doi.org/10.3109/10641960902890176.

Orabona R, Sciatti E, Vizzardi E, Bonadei I, Valcamonico A, Metra M, et al. Elastic properties of ascending aorta in women with previous pregnancy complicated by early- or late-onset pre-eclampsia. Ultrasound Obstet Gynecol. 2016;47:316–23. https://doi.org/10.1002/uog.14838.

Orabona R, Sciatti E, Vizzardi E, Bonadei I, Valcamonico A, Metra M, et al. Endothelial dysfunction and vascular stiffness in women with previous pregnancy complicated by early or late pre-eclampsia. Ultrasound Obstet Gynecol. 2017;49:116–23. https://doi.org/10.1002/uog.15893.

Article  CAS  PubMed  Google Scholar 

Phan K, Gomez YH, Gorgui J, El-Messidi A, Gagnon R, Abenhaim HA, et al. Arterial stiffness for the early prediction of pre-eclampsia compared with blood pressure, uterine artery doppler and angiogenic biomarkers: a prospective cohort study. BJOG. 2023;130:932–40. https://doi.org/10.1111/1471-0528.17430.

Stanhewicz AE, Nuckols VR, Pierce GL. Maternal microvascular dysfunction during preeclamptic pregnancy. Clin Sci (Lond). 2021;135:1083–101. https://doi.org/10.1042/CS20200894.

Aukes A, De Groot J, Wiegman M, Aarnoudse J, Sanwikarja G, Zeeman G. Long-term cerebral imaging after pre-eclampsia. BJOG: An Int J Obstet Gynaecol. 2012;119:1117–22. https://doi.org/10.1111/j.1471-0528.2012.03406.x.

Article  CAS  Google Scholar 

Rayes B, Ardissino M, Slob EAW, Patel KHK, Girling J, Ng FS. Association of hypertensive disorders of pregnancy with future cardiovascular disease. JAMA Netw Open. 2023;6:e230034. https://doi.org/10.1001/jamanetworkopen.2023.0034.

Karen M, Rajan S, Basky T. Cardiovascular implications in preeclampsia. Circulation. 2014;130:703–14. https://doi.org/10.1161/CIRCULATIONAHA.113.003664.

Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and future Cardiovascular health. Circ: Cardiovasc Qual Outcome. 2017;10:e003497. https://doi.org/10.1161/CIRCOUTCOMES.116.003497.

Miller EC. Preeclampsia and cerebrovascular disease. Hypertension. 2019;74:5–13. https://doi.org/10.1161/HYPERTENSIONAHA.118.11513.

Hubel CA, Lyall F, Weissfeld L, Gandley RE, Roberts JM. Small low-density lipoproteins and vascular cell adhesion molecule-1 are increased in association with hyperlipidemia in preeclampsia. Metabolism. 1998;47:1281–8. https://doi.org/10.1016/S0026-0495(98)90337-7.

Qiu C, Phung TTT, Vadachkoria S, Muy-Rivera M, Sanchez SE, Williams MA. Oxidized low-density lipoprotein (Oxidized LDL) and the risk of preeclampsia. Physiol Res. 2006;55:491–500. https://doi.org/10.33549/physiolres.930813.

Schreurs MPH, Hubel CA, Bernstein IM, Jeyabalan A, Cipolla MJ. Increased oxidized low-density lipoprotein causes blood-brain barrier disruption in early-onset preeclampsia through LOX-1. FASEB J. 2013;27:1254–63. https://doi.org/10.1096/fj.12-222216.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staff AC, Dechend R, Pijnenborg R. Learning from the placenta. hypertension. 2010;56:1026–34. https://doi.org/10.1161/HYPERTENSIONAHA.110.157743.

Fosheim IK, Johnsen GM, Alnaes-Katjavivi P, Turowski G, Sugulle M, Staff AC. Decidua basalis and acute atherosis: Expression of atherosclerotic foam cell associated proteins. Placenta. 2021;107:1–7. https://doi.org/10.1016/j.placenta.2021.03.001.

Walsh SW. Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia. Semin Reprod Endocrinol. 1998;16:93–104. https://doi.org/10.1055/s-2007-1016256.

Article  CAS  PubMed  Google Scholar 

Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:C1424-1437. https://doi.org/10.1152/ajpcell.1996.271.5.C1424.

Article  CAS  PubMed  Google Scholar 

Sankaralingam S, Xu Y, Sawamura T, Davidge ST. Increased lectin-like oxidized low-density lipoprotein receptor-1 expression in the maternal vasculature of women with preeclampsia. Hypertension. 2009;53:270–7. https://doi.org/10.1161/HYPERTENSIONAHA.108.122630.

Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, et al. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem. 1997;272:1433–6. https://doi.org/10.1074/jbc.272.3.1433.

Li D, Liu L, Chen H, Sawamura T, Ranganathan S, Mehta JL. LOX-1 Mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation. 2003;107:612–7. https://doi.org/10.1161/01.CIR.0000047276.52039.FB.

Li L, Renier G. The oral anti-diabetic agent, gliclazide, inhibits oxidized LDL-mediated LOX-1 expression, metalloproteinase-9 secretion and apoptosis in human aortic endothelial cells. Atherosclerosis. 2009;204:40–6. https://doi.org/10.1016/j.atherosclerosis.2008.08.008.

Article  CAS  PubMed  Google Scholar 

Myasoedova VA, Chistiakov DA, Grechko AV, Orekhov AN. Matrix metalloproteinases in pro-atherosclerotic arterial remodeling. J Mol Cell Cardiol. 2018;123:159–67. https://doi.org/10.1016/j.yjmcc.2018.08.026.

Article  CAS  PubMed  Google Scholar 

Yasmin WS, McEniery CM, Dakham Z, Pusalkar P, Maki-Petaja K, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:372–8. https://doi.org/10.1161/01.ATV.0000151373.33830.41.

Johnson AC, Cipolla MJ. Impaired function of cerebral parenchymal arterioles in experimental preeclampsia. Microvasc Res. 2018;119:64–72. https://doi.org/10.1016/j.mvr.2018.04.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milano-Foster J, Schulz LC. Approaches to modeling placental function in preeclampsia in vitro and in vivo. J Endocrinol. 2023;258:e230008. https://doi.org/10.1530/JOE-23-0008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Oliveira AA, Elder E, Spaans F, Graton ME, Quon A, Kirschenman R, et al. Excessive hypercholesterolemia in pregnancy impairs rat uterine artery function via activation of Toll-like receptor 4. Clin Sci. 2024;138:137–51. https://doi.org/10.1042/CS20231442.

Article  Google Scholar 

Schreurs MPH, Cipolla MJ. Pregnancy enhances the effects of hypercholesterolemia on posterior cerebral arteries. Reprod Sci. 2013;20:391–9. https://doi.org/10.1177/1933719112459228.

Johnson AC, Cipolla MJ. Altered hippocampal arteriole structure and function in a rat model of preeclampsia: Potential role in impaired seizure-induced hyperemia. J Cereb Blood Flow Metab. 2017;37:2857–69. https://doi.org/10.1177/0271678X16676287.

Article  CAS  PubMed  Google Scholar 

Cipolla MJ, Tremble S, DeLance N, Allison D, Johnson AC. Treatment with apocynin selectively restores hippocampal arteriole function and seizure-induced hyperemia in a model of preeclampsia. J Cereb Blood Flow Metab. 2022;42:1425–36. https://doi.org/10.1177/0271678X221080092.

Article  CAS  PubMed  PubMed Central  Google Scholar 

English FA, McCarthy FP, McSweeney CL, Quon AL, Morton JS, Sawamura T, et al. Inhibition of lectin-like oxidized low-density lipoprotein-1 receptor protects against plasma-mediated vascular dysfunction associated with pre-eclampsia. Am J Hypertens. 2013;26:279–86. https://doi.org/10.1093/ajh/hps035.

Johnson AC, Miller JE, Cipolla MJ. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab. 2020;40:845–59. https://doi.org/10.1177/0271678X19848510.

Article  CAS  PubMed  Google Scholar 

Cipolla MJ. The cerebral circulation, second edition. Colloquium Series on Integrated Systems Physiology: From Molecule to Function. 2016;8:1–80. https://doi.org/10.4199/C00141ED2V01Y201607ISP066.

留言 (0)

沒有登入
gif