Physiologically Based Biopharmaceutics Modeling for Gefapixant IR Formulation Development and Defining the Bioequivalence Dissolution Safe Space

Gupta P, Hussain A, Ford AP, Smith S, Nussbaum JC, Stoch A, Iwamoto M. Clinical formulation bridging of gefapixant, a P2X3-Receptor antagonist, for the treatment of chronic cough. Clin Pharmacol Drug Dev. 2022;11(9):1054–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heimbach T, Kesisoglou F, Novakovic J, Tistaert C, Mueller-Zsigmondy M, Kollipara S, Ahmed T, Mitra A, Suarez-Sharp S. Establishing the bioequivalence safe space for immediate-release oral dosage forms using physiologically based biopharmaceutics modeling (PBBM): case studies. J Pharm Sci. 2021;110:3896–906.

Article  CAS  PubMed  Google Scholar 

Wu D, Sanghavi M, Kollipara S, Ahmed T, Saini AK, Heimbach T. Physiologically based pharmacokinetics modeling in biopharmaceutics: case studies for establishing the bioequivalence safe space for innovator and generic drugs. Pharm Res. 2023;40(2):337–57. https://doi.org/10.1007/s11095-022-03319-6.

Article  CAS  PubMed  Google Scholar 

Heimbach T, Suarez-Sharp S, Kakhi M, Holmstock N, Olivares-Morales A, Pepin X, Sjögren E, Tsakalozou E, Seo P, Li M, Zhang X, Lin HP, Montague T, Mitra A, Morris D, Patel N, Kesisoglou F. Dissolution and translational modeling strategies toward establishing an in vitro-in vivo link-a workshop summary report. AAPS J. 2019;21(2):29.

Article  PubMed  Google Scholar 

Stillhart C, Pepin X, Tistaert C, Good D, Van Den Bergh A, Parrott N, Kesisoglou F. PBPK absorption modeling: establishing the in vitro-in vivo link-industry perspective. AAPSJ. 2019;21(2):19.

Article  PubMed  Google Scholar 

Pepin XJH, Moir AJ, Mann JC, Sanderson NJ, Barker R, Meehan E, Plumb AP, Bailey GR, Murphy DS, Krejsa CM, Andrew MA, Ingallinera TG, Slatter JG. Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part II. A mechanistic PBPK model for IR formulation comparison, proton pump inhibitor drug interactions, and administration with acidic juices. Eur J Pharm Biopharm. 2019;142:435–48.

Article  CAS  PubMed  Google Scholar 

Wu F, Shah H, Li M, Duan P, Zhao P, Suarez S, Raines K, Zhao Y, Wang M, Lin HP, Duan J, Yu L, Seo P. Biopharmaceutics applications of physiologically based pharmacokinetic absorption modeling and simulation in regulatory submissions to the U.S. Food and Drug Administration for new drugs. AAPS J. 2021;23(2):31.

Article  PubMed  Google Scholar 

Zhang X, Yang Y, Grimstein M, Fan J, Grillo JA, Huang SM, Zhu H, Wang Y. Application of PBPK modeling and simulation for regulatory decision making and its impact on US Prescribing Information: an update on the 2018–2019 submissions to the US FDA’s Office of Clinical Pharmacology. J Clin Pharmacol. 2020;60(Suppl 1):S160–78.

CAS  PubMed  Google Scholar 

Lin W, Chen Y, Unadkat JD, Zhang X, Wu D, Heimbach T. Applications, challenges, and outlook for PBPK modeling and simulation: a regulatory, industrial and academic perspective. Pharm Res. 2022;39(8):1701–31.

Article  CAS  PubMed  Google Scholar 

Dodd S, Kollipara S, Sanchez-Felix M, Kim H, Meng Q, Beato S, Heimbach T. Prediction of ARA/PPI drug-drug interactions at the drug discovery and development interface. J Pharm Sci. 2019;108(1):87–101.

Article  CAS  PubMed  Google Scholar 

Laisney M, Heimbach T, Mueller-Zsigmondy M, Blumenstein L, Costa R, Ji Y. Physiologically based biopharmaceutics modeling to demonstrate virtual bioequivalence and bioequivalence safe-space for ribociclib which has permeation rate-controlled absorption. J Pharm Sci. 2022;111(1):274–84.

Article  CAS  PubMed  Google Scholar 

Gajewska M, Blumenstein L, Kourentas A, Mueller-Zsigmondy M, Lorenzo S, Sinn A, Velinova M, Heimbach T. Physiologically based pharmacokinetic modeling of oral absorption, pH, and food effect in healthy volunteers to drive alpelisib formulation selection.  AAPS J 2020;22:134.

Kourentas A, Gajewska M, Lin W, Dhareshwar SS, Steib-Lauer C, Kulkarni S, Hirsch S, Heimbach T, Mueller-Zsigmondy M. Establishing the safe space via physiologically based biopharmaceutics modeling. Case study: Fevipiprant/QAW039. AAPS J. 2023;25(1):25.

Article  CAS  PubMed  Google Scholar 

Kesisoglou F, Vertzoni M, Reppas C. Physiologically based absorption modeling of salts of weak bases based on data in hypochlorhydric and achlorhydric biorelevant media. AAPS PharmSciTech. 2018;19(7):2851–8.

Article  CAS  PubMed  Google Scholar 

Mitra A, Suarez-Sharp S, Pepin XJH, Flanagan T, Zhao Y, Kotzagiorgis E, Parrott N, Sharan S, Tistaert C, Heimbach T, Zolnik B, Sjögren E, Wu F, Anand O, Kakar S, Li M, Veerasingham S, Kijima S, Lima Santos GM, Ning B, Raines K, Rullo G, Mandula H, Delvadia P, Dressman J, Dickinson PA, Babiskin A. Applications of physiologically based biopharmaceutics modeling (PBBM) to support drug product quality: a workshop summary report. J Pharm Sci. 2021;110(2):594–609.

Article  CAS  PubMed  Google Scholar 

K Y, Kollipara S, Ahmed T, Chachad S. Applications of PBPK/PBBM modeling in generic product development: an industry perspective. J Drug Deliv Sci Technol. 2022;69:103152.

Article  CAS  Google Scholar 

Østergaard J. UV imaging in pharmaceutical analysis. J Pharm Biomed Anal. 2018;147:140–8.

Article  PubMed  Google Scholar 

ICH. M9 Biopharmaceutics Classification System – Based Biowaivers, Guidance for Industry, May 2021. 2023 Aug. 2. https://www.fda.gov/media/148472/download.

Nussbaum JC, Hussain A, Ma B, Min KC, Chen Q, Tomek C, Iwamoto M, Stoch SA. Characterization of the absorption, metabolism, excretion, and mass balance of gefapixant in humans. Pharmacol Res Perspect. 2022;10(1):e00924.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyfnua EMA. European Medicines Agency - European Union, Summary of Product Characteristics. EMA. 2024 April 28th. https://www.ema.europa.eu/en/documents/product-information/lyfnua-epar-product-information_en.pdf.

FDA. The Use of Physiologically Based Pharmacokinetic Analyses — Biopharmaceutics Applications for Oral Drug Product Development, Changes M, Controls DFDA. 2021 Oct. 21. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-physiologically-based-pharmacokinetic-analyses-biopharmaceutics-applications-oral-drug-product and https://www.regulations.gov/docket/FDA-2020-D-1517/document.

Kesisoglou F. The role of physiologically based oral absorption modelling in formulation development under a quality by design paradigm. J Pharm Sci. 2017;106(4):944–9.

Article  CAS  PubMed  Google Scholar 

Mackie C, Arora S, Seo P, Moody R, Rege B, Pepin X, Heimbach T, Tannergren C, Mitra A, Suarez-Sharp S, Borges LN, Kijima S, Kotzagiorgis E, Malamatari M, Veerasingham S, Polli JE, Rullo G. Physiologically based biopharmaceutics modeling (PBBM): best practices for drug product quality, regulatory and industry perspectives: 2023 workshop summary report. Mol Pharm. 2024;21:2065–80.

Kambayashi A, Dressman JB. Towards virtual bioequivalence studies for oral dosage forms containing poorly water-soluble drugs: a physiologically based biopharmaceutics modeling (PBBM) approach. J Pharm Sci. 2022;111(1):135–45.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif